הבדלים בין גרסאות בדף "משתמש:איתמר שטיין"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
שורה 1: שורה 1:
 
*[[משתמש:איתמר שטיין/הסבר הופכי|הסבר על חישוב הופכי ב <math>\mathbb{Z}_p</math>]]
 
*[[משתמש:איתמר שטיין/הסבר הופכי|הסבר על חישוב הופכי ב <math>\mathbb{Z}_p</math>]]
 +
 +
 +
1) ב)
 +
 +
ידוע כי
 +
<math>\liminf_{n\rightarrow \infty}(a_n \cdot n)>0</math>
 +
 +
נניח ש
 +
 +
<math>\liminf_{n\rightarrow \infty}(a_n \cdot n)=c>0</math>
 +
 +
 +
נסמן <math>b_n=a_n\cdot n</math>
 +
 +
כלומר
 +
 +
<math>\liminf_{n\rightarrow \infty}b_n=c>0</math>
 +
 +
 +
 +
טענת עזר: קיים <math>N</math> כך שאם <math>n>N</math> אז <math>b_n>\frac{c}{2}</math>
 +
 +
(במילים אחרות: יש רק מספר סופי של איברים ב <math>b_n</math> שיותר קטנים מ <math>\frac{c}{2}</math>)
 +
 +
הוכחה: נניח בשלילה שזה לא נכון, כלומר קיימים אינסוף איברים מ <math>b_n</math> שעבורם <math>b_n\leq \frac{c}{2}</math>
 +
 +
אז קיימת תת סדרה <math>b_{n_k}</math> כך ש <math>b_{n_k}\leq \frac{c}{2}</math> לכל <math>k\in \mathbb{N}</math>
 +
 +
נשים לב ש <math>b_n</math> היא חסומה מלרע ולכן <math>b_{n_k}</math> חסומה גם מלעיל וגם מלרע.
 +
 +
לכן ל <math>b_{n_k}</math> יש תת סדרה מתכנסת <math>b_{n_{k_l}}</math> כך ש
 +
 +
<math>\lim_{l\rightarrow\infty}b_{n_{k_l}}\leq \frac {c}{2}</math>
 +
 +
וזאת בסתירה לכך ש <math>\liminf_{n\rightarrow \infty}b_n=c>\frac{c}{2}</math>
 +
 +
זה מוכיח את טענת העזר.
 +
 +
כעת, אנחנו יודעים שהחל מ <math>N\in \mathbb{N}</math> כלשהוא מתקיים
 +
 +
<math>b_n>\frac{c}{2}</math>
 +
 +
אבל בגלל ש <math>b_n=a_n\cdot n</math> זה אומר שהחל מאותו <math>N\in \mathbb{N}</math> מתקיים
 +
 +
<math>a_n > \frac{c}{2} \frac{1}{n}</math>
 +
 +
בגלל שהטור
 +
<math>\ \sum_{n=1}^\infty \frac{1}{n}</math>
 +
מתבדר
 +
 +
נובע ממבחן ההשוואה לטורים חיוביים שגם הטור <math>\ \sum_{n=1}^\infty  a_n</math> מתבדר.

גרסה מ־10:45, 27 בינואר 2013


1) ב)

ידוע כי \liminf_{n\rightarrow \infty}(a_n \cdot n)>0

נניח ש

\liminf_{n\rightarrow \infty}(a_n \cdot n)=c>0


נסמן b_n=a_n\cdot n

כלומר

\liminf_{n\rightarrow \infty}b_n=c>0


טענת עזר: קיים N כך שאם n>N אז b_n>\frac{c}{2}

(במילים אחרות: יש רק מספר סופי של איברים ב b_n שיותר קטנים מ \frac{c}{2})

הוכחה: נניח בשלילה שזה לא נכון, כלומר קיימים אינסוף איברים מ b_n שעבורם b_n\leq \frac{c}{2}

אז קיימת תת סדרה b_{n_k} כך ש b_{n_k}\leq \frac{c}{2} לכל k\in \mathbb{N}

נשים לב ש b_n היא חסומה מלרע ולכן b_{n_k} חסומה גם מלעיל וגם מלרע.

לכן ל b_{n_k} יש תת סדרה מתכנסת b_{n_{k_l}} כך ש

\lim_{l\rightarrow\infty}b_{n_{k_l}}\leq \frac {c}{2}

וזאת בסתירה לכך ש \liminf_{n\rightarrow \infty}b_n=c>\frac{c}{2}

זה מוכיח את טענת העזר.

כעת, אנחנו יודעים שהחל מ N\in \mathbb{N} כלשהוא מתקיים

b_n>\frac{c}{2}

אבל בגלל ש b_n=a_n\cdot n זה אומר שהחל מאותו N\in \mathbb{N} מתקיים

a_n > \frac{c}{2} \frac{1}{n}

בגלל שהטור \ \sum_{n=1}^\infty \frac{1}{n} מתבדר

נובע ממבחן ההשוואה לטורים חיוביים שגם הטור \ \sum_{n=1}^\infty  a_n מתבדר.