משתמש:איתמר שטיין

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש

שאלה 1

סעיף א

עבור נקודות (x,y,z)\neq (0,0,0) פשוט גוזרים את הפונקציה לפי x

f_x(x,y,z)=\frac{zy\cos(xy){(x^2+y^2+z^2)}^\frac{1}{3}-\frac{1}{3}{(x^2+y^2+z^2)}^{-\frac{2}{3}}\cdot (2x)\cdot{(z\sin(xy))}}{{(x^2+y^2+z^2)}^\frac{2}{3}}


עבור הנקודה (x,y,z)=(0,0,0) קל לראות ש

\lim_{t\rightarrow 0}\frac{f(t,0,0)-f(0,0,0)}{t}=\lim_{t\rightarrow 0}\frac{0-0}{t}=0


סעיף ב

כמו שראינו בקלות ש f_x(0,0,0)=0 קל לראות שגם f_y(0,0,0)=0 ו f_z(0,0,0)=0.

ראשית נוודא ש f רציפה (לא חייבים, אבל בדר"כ שווה לבדוק. כי אם היא לא רציפה אז ברור שהיא לא דיפרנציאבילית).

נשים לב ש

|\frac{z\sin(xy)}{{(x^2+y^2+z^2)}^{\frac{1}{3}}}|\leq |\frac{z}{{(x^2+y^2+z^2)}^{\frac{1}{3}}}|\leq 
|\frac{z}{{(z^2)}^{\frac{1}{3}}}|=|z^{\frac{1}{3}}|\rightarrow 0

ולכן f רציפה.

נבדוק דיפרנציאביליות

צריך לבדוק אם \epsilon (h_1,h_2,h_3) המוגדרת לפי:

f(h_1,h_2,h_3)-f(0,0,0)=f_x(0,0,0)h_1+f_y(0,0,0)h_2+f_z(0,0,0)h_3+\epsilon(h_1,h_2,h_3)\sqrt{h_1^2+h_2^2+h_3^2}

מתכנסת ל 0 בנקודה (0,0,0).

במקרה שלנו צריך לבדוק את:

\lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)}\frac{h_3\sin (h_1 h_2)}{{(h_1^2+h_2^2+h_3^2)}^\frac{1}{3}\cdot {(h_1^2+h_2^2+h_3^2)}^{\frac{1}{2}}}
= \lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)}\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2+h_3^2)}^\frac{5}{6}}\frac{\sin(h_1 h_2)}{h_1 h_2}

היות ו

\lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)} \frac{\sin(h_1 h_2)}{h_1 h_2} = 1

נותר לבדוק את

\lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)}\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2+h_3^2)}^\frac{5}{6}}

נשים לב ש

|\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2+h_3^2)}^\frac{5}{6}}|\leq |\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2)}^\frac{5}{6}}|
\leq |h_3||\frac{h_1 h_2}{{(2h_1 h_2)}^\frac{5}{6}}|= \frac{1}{2^{\frac{5}{6}}}|h_3||{(h_1 h_2)}^{\frac{1}{6}}|\rightarrow 0

דרך אחרת (שימושית כאשר יש במכנה דברים בסגנון ||h||):

עוברים לקוארדינטות כדוריות

h_1 = r\cos \theta \sin \varphi,\quad h_2 = r\sin \theta \sin \varphi ,\quad h_3 = r \cos \varphi

ואז צריך לחשב גבול

\lim_{r\rightarrow 0}\frac {r^3 \cos \theta \sin \theta \sin ^2 \varphi \cos \varphi}{{(r^2)}^{\frac{5}{6}}}
=\lim_{r\rightarrow 0} {r^{\frac{8}{6}} \cos \theta \sin \theta \sin ^2 \varphi \cos \varphi}=0

ולכן f דיפרנציאבילית ב (0,0,0).

שאלה 3

x^2+y^2=\frac{1}{2}z^2

x+y+z=2

הנגזרות החלקיות של הפונקציות

f_1(x,y,z)=x^2+y^2-\frac{1}{2}z^2=0 f_2(x,y,z)=x+y+z-2=0

קיימות עד איזה סדר שרוצים.

כמו כן, הנקודה (1,-1,2) מקיימת את מערכת המשוואות.

נבדוק את התנאי של משפט הפונקציה הסתומה

\begin{bmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y}  \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}
=\begin{bmatrix}
2x & 2y  \\
1 & 1 \end{bmatrix}

בנקודה (1,-1,2) נקבל את המטריצה


\begin{bmatrix}
2 & -2  \\
1 & 1 \end{bmatrix}

שהיא מטריצה הפיכה.

לכן לפי משפט הפונקציה הסתומה, אכן מוגדרות פונקציות של x,y לפי z

לפי משפט הפונקציה הסתומה, קיימת סביבה של הנקודה

(1,-1,2) שבה מתקיים:


\begin{bmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y}  \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}
\begin{bmatrix}
\frac{dx}{dz} \\
\frac{dy}{dz}
\end{bmatrix}
=
-\begin{bmatrix}
\frac{\partial f_1}{\partial z}  \\
\frac{\partial f_1}{\partial z} \end{bmatrix}

כלומר במקרה שלנו:

\begin{bmatrix}
2x & 2y \\
1 & 1 \end{bmatrix}
\begin{bmatrix}
\frac{dx}{dz} \\
\frac{dy}{dz}
\end{bmatrix}
=
\begin{bmatrix}
z  \\
-1 \end{bmatrix}

אם פותרים את המשוואות


רואים ש


\begin{bmatrix}
\frac{dx}{dz} \\
\frac{dy}{dz}
\end{bmatrix}
=
\frac{1}{2x-2y}
\begin{bmatrix}
1 & -2y \\
-1 & 2x \end{bmatrix}
\begin{bmatrix}
z  \\
-1 \end{bmatrix}

כלומר:

\frac{dx}{dz} = \frac{z+2y}{2x-2y},\quad \frac{dy}{dz}=\frac{-z-2x}{2x-2y}

מכאן, על ידי הצבה של (1,-1,2) קל לראות שבנקודה z=2 מתקיים

\frac{dx}{dz}(2)=0,\quad \frac{dy}{dz}(2)=-1

כמו כן נחשב את x''(z) בסביבה של (1,-1,2) על ידי גזירה רגילה לפי z (אבל נשים לב ש x,y הם פונקציות של z):

x''(z)=\frac{(1+2y')(2x-2y)-(z+2y)(2x'-2y')}{(2x-2y)^2}

נציב x=1,y=-1,z=2,x'=0,y'=-1 ונקבל:

x''(2)=\frac{(1-2)4-(0)(0+2)}{16}=-\frac{1}{4}