הבדלים בין גרסאות בדף "קוד:חסמים"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(יצירת דף עם התוכן "הגדרה: תהי U סדורה ותהי תת קבוצה $A\subseteq U$, אזי: $M\in U$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ $m\in...")
 
 
(11 גרסאות ביניים של 3 משתמשים אינן מוצגות)
שורה 1: שורה 1:
הגדרה: תהי U סדורה ותהי תת קבוצה $A\subseteq U$, אזי:
+
\begin{definition}
 +
תהי קבוצה $A\subseteq \mathbb{R}$, אזי:
 +
\begin{enumerate}
 +
\item $M$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ (כלומר שגדול/שווה מכל איברי הקבוצה)
  
$M\in U$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$
+
\item $m$ נקרא חסם מלרע של A אם $\forall a\in A:a\geq m$  
  
$m\in U$ נקרא חסם מלרע של A אם $\forall a\in A:a\geq m$
+
\end{enumerate}
  
חסם מלעיל של A נקרא מקסימום אם הוא שייך לקבוצה A
+
\end{definition}
  
חסם מלרע של A נקרא מינימום אם הוא שייך לקבוצה A
 
  
חסם מלעיל של A נקרא החסם העליון של A אם אין ל-A חסם מלעיל קטן ממש ממנו. (כלומר, החסם העליון הוא המינימום מבין קבוצת חסמי המלעיל, אם כזה קיים.)
+
\begin{example}
 +
ניקח לדוגמה את
 +
$$A=\{1,2,3,-5,463\} $$
 +
$1000$ חסם מלעיל של $A$ משום שגדול או שווה לכל איברי הקבוצה.\\
 +
גם $683$ חסם מלעיל של $A$, מאותה סיבה. \\
 +
$463$ הוא מקרה מיוחד של חסם מלעיל מיוחד, הוא המקסימום, דבר שנגדיר עוד מעט.
 +
מצד שני\\
 +
$-5.5 $ חסם מלרע של $A$ משום שקטן או שווה לכל איברי הקבוצה.\\
 +
$-5 $ גם הוא חסם מלרע של $A$, אך הפעם זהו המינימום
 +
\end{example}
  
חסם מלרע של A נקרא החסם התחתון של A אם אין ל-A חסם מלרע גדול ממש ממנו. (כלומר, החסם התחתון הוא המקסימום מבין קבוצת חסמי המלרע, אם כזה קיים.)
+
\begin{example}
 +
לא לכל קבוצה יש חסם מלעיל או מלרע. לדוגמה ניקח את $\mathbb{N}=\{1,2,3,\cdots\}$ ונראה ש-$0$ הוא חסם מלרע, איך אין לקבוצה חסם מלעיל!
 +
\end{example}
  
 +
\begin{definition}
 +
תהי קבוצה $A\subseteq \mathbb{R}$, אזי:\\
 +
$M$ הוא חסם עליון של $A$ אם מתקיים:\\
 +
א. $M$ חסם מלעיל\\
 +
ב. לכל חסם מלעיל $T$ מתקיים $M\leq T$\\
 +
מסמנים אותו $\sup A $, מהמילה $\text{superior}$.
 +
\end{definition}
  
שימו לב לשלילות הבאות:
+
\begin{remark}
 +
חסם מלעיל של $A$ הוא חסם עליון אם אין חסם מלעיל קטן ממנו, בעצם חסם עליון הוא חסם המלעיל הכי קטן.
 +
\end{remark}
  
M אינו חסם מלעיל אם"ם קיים איבר a>M
+
\begin{definition}
 +
תהי קבוצה $A\subseteq \mathbb{R}$, אזי:\\
 +
$M$ הוא חסם עליון של $A$ אם מתקיים:\\
 +
א. $M$ חסם מלרע\\
 +
ב. לכל חסם מלרע $T$ מתקיים $M\geq T$\\
 +
מסמנים אותו $\inf A $, מהמילה $\text{inferior}$.
  
m אינו חסם מלרע אם"ם קיים איבר a<m
+
\end{definition}
  
M אינו חסם עליון אם"ם הוא אינו חסם מלעיל או שקיים חסם מלעיל הקטן ממש ממנו.
+
\begin{example}
 +
ניקח את
 +
$$B=\left \{\left ( \frac{1}{n} \right ) : n\in \mathbb{N} \right \} = \left \{1,\frac{1}{2},\frac{1}{3},\cdots\right \} $$
 +
נשים לב ש-$1$ חסם מלעיל של הקבוצה ואפילו החסם העליון שלה, משום שכל חסם מלעיל צריך להיות גדול או שווה לכל איברי הקבוצה, בפרט ל-$1$.\\
 +
הקבוצה חסומה מלרע ע"י $0$, וזה גם החסם התחתון, משום שאם היה חסם מלרע אחר, אפסילון, שלכל $n$ היה מקיים $\varepsilon<\frac{1}{n}$ אז אפשר לראות שזה בלתי אפשרי ע"י לקחת $n>\frac{1}{\varepsilon} $ ולהגיע לסתירה.\\
 +
\end{example}
  
m אינו חסם תחתון אם"ם הוא אינו חסם מלרע או שקיים חסם מלרע הגדול ממש ממנו.
+
\begin{remark}
 +
לא תמיד קיים חסם עליון, לדוגמה אם הקבוצה לא חסומה מלעיל, בוודאי שאין חסם עליון.
 +
\end{remark}
  
אקסיומת השלימות של המספרים הממשיים - לכל $A\subseteq\mathbb{R}$ חסומה מלעיל (מלרע) קיים חסם עליון (תחתון).
+
\begin{thm}
 +
אם חסם עליון קיים אזי הוא יחיד
 +
\end{thm}
  
ניתן לראות ששדה הרציונאליים אינו שלם. נגדיר קבוצה של כל המספרים הרציונאליים אשר בריבוע קטנים משתים (כלומר המספרים שקטנים משורש שתים). לכל חסם מלעיל של הקבוצה, יש חסם מלעיל הקרוב יותר לשורש שתים הקטן ממנו (שכן שורש שתים עצמו אינו רציונאלי ולכן לא יכול להוות חסם מלעיל). לכן אין אף חסם עליון לקבוצה החסומה מלעיל שבנינו.
+
\begin{proof}
 +
אם $M_1,M_2 $ חסם עליונים אז שניהם חסמים מלעיל. כיוון ש- $M_1 $ חסם עליון ו- $M_2 $ חסם מלעיל מתקיים ש- $M_1\leq M_2 $, ובאופן סימטרי כיוון ש- $M_2 $ חסם עליון ו- $M_1 $ חסם מלעיל אז $M_2\leq M_1 $. בסך הכך $M_1=M_2 $ ואז ראינו שאם יש כמה חסמים עליונים, הם בעצם אותו אחד.  
 +
\end{proof}
  
 +
\begin{remark}
 +
הטענה נכונה גם לחסם תחתון, עם הוכחה כמעט זהה (רק צריך להפוך את סימני אי השיוויונים)
 +
\end{remark}
  
משפט. תהי $A\subseteq\mathbb{R}$ חסומה מלעיל אזי:
+
\begin{definition}
 +
חסם עליון של A נקרא מקסימום אם הוא שייך לקבוצה A (בעצם המקסימום זה איבר בקבוצה שגדול או שווה לכל איברי הקבוצה)\\
 +
חסם תחתון של A נקרא מינימום אם הוא שייך לקבוצה A
 +
 
 +
\end{definition}
 +
 
 +
\begin{example}
 +
ניקח את $C=[a,b)$. נראה כי $\inf C = a , \sup C = b $, וכיוון ש- $a\in C , b\not\in C $ נקבל שיש לקבוצה מינימום אבל לא מקסימום.
 +
\end{example}
 +
 
 +
\begin{example}
 +
ניקח את
 +
$$D=\left \{\left ( \frac{1}{10} \right )^n : n\in \mathbb{N} \right \} = \left \{0.1,0.01,0.001,\cdots\right \} $$
 +
נשים לב ש-$0.1$ חסם מלעיל של הקבוצה, ומשום גם נמצא בתוך הקבוצה הוא מקסימום שלה ומכאן גם חסם עליון.\\
 +
מה המינימום שלה? נראה שאין כזה ע"י כך שנמצא את החסם התחתון של $D$ ונראה שהוא לא בקבוצה, למרות שמינימום הוא תמיד בקבוצה.\\
 +
$0$ חסם תחתון של $D$ משום שחסם מלרע וגם אם קיים חסם מלרע גדול יותר, $\varepsilon$ אז מתקיים
 +
$$\forall n :\varepsilon\leq \left ( \frac{1}{10} \right )^n =\frac{1}{10^n}\Rightarrow$$
 +
$$\forall n : 10^n \leq \frac{1}{\varepsilon} $$
 +
אבל החלק הימני קבוע והחלק השמאלי יכול להיות גדול כרצוננו (עבור בחירת $n$ מספיק גדול) ולכן קיבלנו שמשהו שגדול כרצוננו קטן ממשהו קבוע וזוהי כמובן סתירה, ומכאן ש-$0$ הוא חסם המלרע הכי גדול.\\
 +
מצד שני $0\not\in D $ , ולכן אין מינימום.
 +
\end{example}
 +
 
 +
\begin{thm}
 +
אם $M$ חסם מלעיל של $A$ ו- $M\in A$ אזי הוא מקסימום
 +
\end{thm}
 +
 
 +
\begin{proof}
 +
צריך להוכיח ש-$M$ חסם עליון. נניח שקיים חסם מלעיל אחר, $T$ אזי $\forall a\in A : a\leq T $ אבל $M\in A $ ולכן $M\leq T$. לכן הוא חסם עליון.
 +
\end{proof}
 +
שימו לב לשלילות הבאות:
 +
\begin{enumerate}
 +
\item $M$ אינו חסם מלעיל אם"ם קיים איבר $a\in A$ כך ש- $a>M$
 +
\item $m$ אינו חסם מלרע אם"ם קיים איבר $a\in A$ כך ש- $a<M$
 +
\item $M$ אינו חסם עליון אם"ם מתקיים אחד מהתנאים הבאים:\\
 +
א. $M$ אינו חסם מלעיל\\
 +
ב. קיים חסם מלעיל $T$ כך ש- $T<M$.
 +
\item $m$ אינו חסם תחתון אם"ם מתקיים אחד מהתנאים הבאים:\\
 +
א. $m$ אינו חסם מלרע\\
 +
ב. קיים חסם מלרע $t$ כך ש- $m<t$.
 +
\end{enumerate}
 +
 
 +
\begin{thm}
 +
תהי $A\subseteq\mathbb{R}$ חסומה מלעיל אזי:
  
 
M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$
 
M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$
שורה 35: שורה 118:
 
m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$
 
m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$
  
 
+
\end{thm}
 
במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.)
 
במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.)
  
הוכחה. נניח M חסם עליון. מתוך ההגדרה של חסם עליון נובע בפרט ש-M חסם מלעיל. נותר להוכיח כי
+
\begin{proof}
 +
נוכיח עבור חסם עליון, ועבור חסם תחתון אפשר להוכיח באופן דומה.\\
 +
\boxed{\Leftarrow}\\
 +
נניח $M$ חסם עליון. מתוך ההגדרה של חסם עליון נובע בפרט ש-$M$ חסם מלעיל. נותר להוכיח כי
 +
$$\forall\epsilon >0\exists a\in A:a>M-\epsilon$$
 +
נניח בשלילה כי קיים $\epsilon >0$ כל שלכל האיברים $a\in A$ מתקיים $a\leq M-\epsilon$.\\
 +
לכן, לפי ההגדרה, $M-\epsilon$ הוא חסם מלעיל של הקבוצה. מכיוון שאפסילון גדול מאפס, $M-\epsilon$ הוא חסם מלעיל קטן ממש מהחסם העליון $M$, בסתירה לכך שהוא חסם המלעיל הקטן ביותר.\\
 +
\boxed{\Rightarrow}
 +
נניח בשלילה ש- $M$ לא חסם עליון. לפי הנתון הוא חסם מלעיל ולכן מההנחה בשלילה מסיקים שיש חסם מלעיל קטן ממנו, נסמנו $m$. נסתכל על $\varepsilon=M-m $ , ונראה ש- $M-\varepsilon=m $ , שגדול או שווה לכל איברי הקבוצה, ולכן אין איבר ב-$A$ שגדול מ-$M-\varepsilon$, בסתירה לנתון.
 +
\end{proof}
 +
 
 +
 
 +
\begin{remark}
 +
תהי $A\subseteq \mathbb{R} $ ונגדיר $B=\{-a : a\in A\} $. אזי\\
 +
1. $M $ חסם מלעיל של $A$ אם ורק אם $-M$ חסם מלרע של $B$\\
 +
2. $M$ חסם עליון של $A$ אם ורק אם $-M$ חסם תחתון של $B$.
 +
\end{remark}
 +
 
 +
\begin{proof}
 +
\begin{enumerate}
 +
\item $-M$ חסם מלרע של $B$ $\Leftrightarrow$\\
 +
$\forall b \in B : -M\leq b $ $\Leftrightarrow$\\
 +
$\forall a\in A : -M\leq -a $ $\Leftrightarrow$\\
 +
$\forall a\in A : a\leq M $ $\Leftrightarrow$\\
 +
$M$ חסם מלעיל של $A$
 +
\item נניח $M$ חסם עליון של $A$, בפרט הוא חסם מלעיל ולכן $-M$ חסם מלרע של $B$. כעת נניח בשלילה שקיים חסם מלרע $m\geq -M $, ולכן $-m\leq M $ חסם מלעיל של $A$ בסתירה לכך ש- $M$ חסם המלעיל הכי קטן שלו, ולכן אין חסם מלרע גדול מ- $-M$ ואז הוא חסם תחתון. את הכיוון השני מוכיחים באופן דומה. 
 +
\end{enumerate}
 +
\end{proof}
 +
 
 +
\begin{remark}[אקסיומת החסם העליון]
 +
מאחת ההגדרות של $\mathbb{R} $ מקבלים שלכל $\phi \neq A\subseteq\mathbb{R}$ חסומה מלעיל קיים חסם עליון.
 +
\end{remark}
 +
 
 +
\begin{thm}
 +
אם $\phi \neq A\subseteq\mathbb{R}$ חסומה מלרע אזי קיים חסם תחתון.
 +
\end{thm}
 +
 
 +
\begin{proof}
 +
תהי $A$ לא ריקה חסומה מלרע. אם נגדיר את $B$ כמו במשפט האחרון נקבל שהיא חסומה מלעיל לפי המשפט, ומההערה יש לה חסם עליון $M$. מאותו המשפט, נקבל ש- $-M$ חסם תחתון של $A$ ולכן הוכחנו שיש לה חסם תחתון. (מצאנו אותו)
 +
\end{proof}
  
$\forall\epsilon >0\exists a\in A:a>M-\epsilon$
+
\begin{remark}
נניח בשלילה כי קיים $\epsilon >0$ כל שלכל האיברים $a\in A$ מתקיים $a\leq M-\epsilon$.
+
בהנתן 2 קבוצות לא ריקות $A,B$ נגדיר את $A+B$ באופן הבא:
 +
$$A+B=\{ a+b | a\in A , b\in B\}$$
 +
אם שתיהן חסומות מלעיל אזי גם $A+B$ חסומה מלעיל ומתקיים ש- $\sup(A+B)=\sup A + \sup B $
 +
\end{remark}
  
לכן, לפי ההגדרה, $M-\epsilon$ הוא חסם מלעיל של הקבוצה. מכיוון שאפסילון גדול מאפס, $M-\epsilon$ הוא חסם מלעיל קטן ממש מהחסם העליון $M$, בסתירה לכך שהוא חסם המלעיל הקטן ביותר.
+
\begin{proof}
 +
קודם כל נראה ש- $\sup A + \sup B $ הוא חסם מלעיל של $A+B$:
 +
יהי $x\in A+B$ אזי קיימים $a\in A , b\in B $ כך ש- $x=a+b$.\\
 +
כעת נראה ש- $x=a+b\leq \sup A + \sup B $ משום ש- $a\leq \sup A , b\leq \sup B$.\\
 +
כעת נראה שזהו חסם עליון: יהי $\varepsilon>0 $. ידוע אז ש-
 +
$$\exists a'\in A , b'\in B : \sup A -\frac{\varepsilon}{2}<a' , \sup B-\frac{\varepsilon}{2}<b'$$
 +
ולכן
 +
$$\sup A + \sup B - \varepsilon = \sup A -\frac{\varepsilon}{2} +  \sup B-\frac{\varepsilon}{2} < a'+b' \in A+B$$
 +
הוכחנו שלכל אפסילון קיים איבר ב- $A+B$ שגדול מ- $\sup A + \sup B - \varepsilon$ ולכן\\
 +
$\sup A + \sup B$ הוא החסם העליון של $A+B$
 +
\end{proof}

גרסה אחרונה מ־00:00, 7 באוקטובר 2014

\begin{definition} תהי קבוצה $A\subseteq \mathbb{R}$, אזי: \begin{enumerate} \item $M$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ (כלומר שגדול/שווה מכל איברי הקבוצה)

\item $m$ נקרא חסם מלרע של A אם $\forall a\in A:a\geq m$

\end{enumerate}

\end{definition}


\begin{example} ניקח לדוגמה את $$A=\{1,2,3,-5,463\} $$ $1000$ חסם מלעיל של $A$ משום שגדול או שווה לכל איברי הקבוצה.\\ גם $683$ חסם מלעיל של $A$, מאותה סיבה. \\ $463$ הוא מקרה מיוחד של חסם מלעיל מיוחד, הוא המקסימום, דבר שנגדיר עוד מעט. מצד שני\\ $-5.5 $ חסם מלרע של $A$ משום שקטן או שווה לכל איברי הקבוצה.\\ $-5 $ גם הוא חסם מלרע של $A$, אך הפעם זהו המינימום \end{example}

\begin{example} לא לכל קבוצה יש חסם מלעיל או מלרע. לדוגמה ניקח את $\mathbb{N}=\{1,2,3,\cdots\}$ ונראה ש-$0$ הוא חסם מלרע, איך אין לקבוצה חסם מלעיל! \end{example}

\begin{definition} תהי קבוצה $A\subseteq \mathbb{R}$, אזי:\\ $M$ הוא חסם עליון של $A$ אם מתקיים:\\ א. $M$ חסם מלעיל\\ ב. לכל חסם מלעיל $T$ מתקיים $M\leq T$\\ מסמנים אותו $\sup A $, מהמילה $\text{superior}$. \end{definition}

\begin{remark} חסם מלעיל של $A$ הוא חסם עליון אם אין חסם מלעיל קטן ממנו, בעצם חסם עליון הוא חסם המלעיל הכי קטן. \end{remark}

\begin{definition} תהי קבוצה $A\subseteq \mathbb{R}$, אזי:\\ $M$ הוא חסם עליון של $A$ אם מתקיים:\\ א. $M$ חסם מלרע\\ ב. לכל חסם מלרע $T$ מתקיים $M\geq T$\\ מסמנים אותו $\inf A $, מהמילה $\text{inferior}$.

\end{definition}

\begin{example} ניקח את $$B=\left \{\left ( \frac{1}{n} \right ) : n\in \mathbb{N} \right \} = \left \{1,\frac{1}{2},\frac{1}{3},\cdots\right \} $$ נשים לב ש-$1$ חסם מלעיל של הקבוצה ואפילו החסם העליון שלה, משום שכל חסם מלעיל צריך להיות גדול או שווה לכל איברי הקבוצה, בפרט ל-$1$.\\ הקבוצה חסומה מלרע ע"י $0$, וזה גם החסם התחתון, משום שאם היה חסם מלרע אחר, אפסילון, שלכל $n$ היה מקיים $\varepsilon<\frac{1}{n}$ אז אפשר לראות שזה בלתי אפשרי ע"י לקחת $n>\frac{1}{\varepsilon} $ ולהגיע לסתירה.\\ \end{example}

\begin{remark} לא תמיד קיים חסם עליון, לדוגמה אם הקבוצה לא חסומה מלעיל, בוודאי שאין חסם עליון. \end{remark}

\begin{thm} אם חסם עליון קיים אזי הוא יחיד \end{thm}

\begin{proof} אם $M_1,M_2 $ חסם עליונים אז שניהם חסמים מלעיל. כיוון ש- $M_1 $ חסם עליון ו- $M_2 $ חסם מלעיל מתקיים ש- $M_1\leq M_2 $, ובאופן סימטרי כיוון ש- $M_2 $ חסם עליון ו- $M_1 $ חסם מלעיל אז $M_2\leq M_1 $. בסך הכך $M_1=M_2 $ ואז ראינו שאם יש כמה חסמים עליונים, הם בעצם אותו אחד. \end{proof}

\begin{remark} הטענה נכונה גם לחסם תחתון, עם הוכחה כמעט זהה (רק צריך להפוך את סימני אי השיוויונים) \end{remark}

\begin{definition} חסם עליון של A נקרא מקסימום אם הוא שייך לקבוצה A (בעצם המקסימום זה איבר בקבוצה שגדול או שווה לכל איברי הקבוצה)\\ חסם תחתון של A נקרא מינימום אם הוא שייך לקבוצה A

\end{definition}

\begin{example} ניקח את $C=[a,b)$. נראה כי $\inf C = a , \sup C = b $, וכיוון ש- $a\in C , b\not\in C $ נקבל שיש לקבוצה מינימום אבל לא מקסימום. \end{example}

\begin{example} ניקח את $$D=\left \{\left ( \frac{1}{10} \right )^n : n\in \mathbb{N} \right \} = \left \{0.1,0.01,0.001,\cdots\right \} $$ נשים לב ש-$0.1$ חסם מלעיל של הקבוצה, ומשום גם נמצא בתוך הקבוצה הוא מקסימום שלה ומכאן גם חסם עליון.\\ מה המינימום שלה? נראה שאין כזה ע"י כך שנמצא את החסם התחתון של $D$ ונראה שהוא לא בקבוצה, למרות שמינימום הוא תמיד בקבוצה.\\ $0$ חסם תחתון של $D$ משום שחסם מלרע וגם אם קיים חסם מלרע גדול יותר, $\varepsilon$ אז מתקיים $$\forall n :\varepsilon\leq \left ( \frac{1}{10} \right )^n =\frac{1}{10^n}\Rightarrow$$ $$\forall n : 10^n \leq \frac{1}{\varepsilon} $$ אבל החלק הימני קבוע והחלק השמאלי יכול להיות גדול כרצוננו (עבור בחירת $n$ מספיק גדול) ולכן קיבלנו שמשהו שגדול כרצוננו קטן ממשהו קבוע וזוהי כמובן סתירה, ומכאן ש-$0$ הוא חסם המלרע הכי גדול.\\ מצד שני $0\not\in D $ , ולכן אין מינימום. \end{example}

\begin{thm} אם $M$ חסם מלעיל של $A$ ו- $M\in A$ אזי הוא מקסימום \end{thm}

\begin{proof} צריך להוכיח ש-$M$ חסם עליון. נניח שקיים חסם מלעיל אחר, $T$ אזי $\forall a\in A : a\leq T $ אבל $M\in A $ ולכן $M\leq T$. לכן הוא חסם עליון. \end{proof} שימו לב לשלילות הבאות: \begin{enumerate} \item $M$ אינו חסם מלעיל אם"ם קיים איבר $a\in A$ כך ש- $a>M$ \item $m$ אינו חסם מלרע אם"ם קיים איבר $a\in A$ כך ש- $a<M$ \item $M$ אינו חסם עליון אם"ם מתקיים אחד מהתנאים הבאים:\\ א. $M$ אינו חסם מלעיל\\ ב. קיים חסם מלעיל $T$ כך ש- $T<M$. \item $m$ אינו חסם תחתון אם"ם מתקיים אחד מהתנאים הבאים:\\ א. $m$ אינו חסם מלרע\\ ב. קיים חסם מלרע $t$ כך ש- $m<t$. \end{enumerate}

\begin{thm} תהי $A\subseteq\mathbb{R}$ חסומה מלעיל אזי:

M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$

m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$

\end{thm} במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.)

\begin{proof} נוכיח עבור חסם עליון, ועבור חסם תחתון אפשר להוכיח באופן דומה.\\ \boxed{\Leftarrow}\\ נניח $M$ חסם עליון. מתוך ההגדרה של חסם עליון נובע בפרט ש-$M$ חסם מלעיל. נותר להוכיח כי $$\forall\epsilon >0\exists a\in A:a>M-\epsilon$$ נניח בשלילה כי קיים $\epsilon >0$ כל שלכל האיברים $a\in A$ מתקיים $a\leq M-\epsilon$.\\ לכן, לפי ההגדרה, $M-\epsilon$ הוא חסם מלעיל של הקבוצה. מכיוון שאפסילון גדול מאפס, $M-\epsilon$ הוא חסם מלעיל קטן ממש מהחסם העליון $M$, בסתירה לכך שהוא חסם המלעיל הקטן ביותר.\\ \boxed{\Rightarrow} נניח בשלילה ש- $M$ לא חסם עליון. לפי הנתון הוא חסם מלעיל ולכן מההנחה בשלילה מסיקים שיש חסם מלעיל קטן ממנו, נסמנו $m$. נסתכל על $\varepsilon=M-m $ , ונראה ש- $M-\varepsilon=m $ , שגדול או שווה לכל איברי הקבוצה, ולכן אין איבר ב-$A$ שגדול מ-$M-\varepsilon$, בסתירה לנתון. \end{proof}


\begin{remark} תהי $A\subseteq \mathbb{R} $ ונגדיר $B=\{-a : a\in A\} $. אזי\\ 1. $M $ חסם מלעיל של $A$ אם ורק אם $-M$ חסם מלרע של $B$\\ 2. $M$ חסם עליון של $A$ אם ורק אם $-M$ חסם תחתון של $B$. \end{remark}

\begin{proof} \begin{enumerate} \item $-M$ חסם מלרע של $B$ $\Leftrightarrow$\\ $\forall b \in B : -M\leq b $ $\Leftrightarrow$\\ $\forall a\in A : -M\leq -a $ $\Leftrightarrow$\\ $\forall a\in A : a\leq M $ $\Leftrightarrow$\\ $M$ חסם מלעיל של $A$ \item נניח $M$ חסם עליון של $A$, בפרט הוא חסם מלעיל ולכן $-M$ חסם מלרע של $B$. כעת נניח בשלילה שקיים חסם מלרע $m\geq -M $, ולכן $-m\leq M $ חסם מלעיל של $A$ בסתירה לכך ש- $M$ חסם המלעיל הכי קטן שלו, ולכן אין חסם מלרע גדול מ- $-M$ ואז הוא חסם תחתון. את הכיוון השני מוכיחים באופן דומה. \end{enumerate} \end{proof}

\begin{remark}[אקסיומת החסם העליון] מאחת ההגדרות של $\mathbb{R} $ מקבלים שלכל $\phi \neq A\subseteq\mathbb{R}$ חסומה מלעיל קיים חסם עליון. \end{remark}

\begin{thm} אם $\phi \neq A\subseteq\mathbb{R}$ חסומה מלרע אזי קיים חסם תחתון. \end{thm}

\begin{proof} תהי $A$ לא ריקה חסומה מלרע. אם נגדיר את $B$ כמו במשפט האחרון נקבל שהיא חסומה מלעיל לפי המשפט, ומההערה יש לה חסם עליון $M$. מאותו המשפט, נקבל ש- $-M$ חסם תחתון של $A$ ולכן הוכחנו שיש לה חסם תחתון. (מצאנו אותו) \end{proof}

\begin{remark} בהנתן 2 קבוצות לא ריקות $A,B$ נגדיר את $A+B$ באופן הבא: $$A+B=\{ a+b | a\in A , b\in B\}$$ אם שתיהן חסומות מלעיל אזי גם $A+B$ חסומה מלעיל ומתקיים ש- $\sup(A+B)=\sup A + \sup B $ \end{remark}

\begin{proof} קודם כל נראה ש- $\sup A + \sup B $ הוא חסם מלעיל של $A+B$: יהי $x\in A+B$ אזי קיימים $a\in A , b\in B $ כך ש- $x=a+b$.\\ כעת נראה ש- $x=a+b\leq \sup A + \sup B $ משום ש- $a\leq \sup A , b\leq \sup B$.\\ כעת נראה שזהו חסם עליון: יהי $\varepsilon>0 $. ידוע אז ש- $$\exists a'\in A , b'\in B : \sup A -\frac{\varepsilon}{2}<a' , \sup B-\frac{\varepsilon}{2}<b'$$ ולכן $$\sup A + \sup B - \varepsilon = \sup A -\frac{\varepsilon}{2} + \sup B-\frac{\varepsilon}{2} < a'+b' \in A+B$$ הוכחנו שלכל אפסילון קיים איבר ב- $A+B$ שגדול מ- $\sup A + \sup B - \varepsilon$ ולכן\\ $\sup A + \sup B$ הוא החסם העליון של $A+B$ \end{proof}