הבדלים בין גרסאות בדף "קוד:משפט ערך הביניים"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
שורה 1: שורה 1:
\begin{theorem}
+
\begin{thm}
נניח $f:[a,b]\to\mathbb{R} $ רציפה בקטע (כלומר רציפה בכל נק' בקטע) אזי לכל $y\in [f(a),f(b)] \cup [f(b),f(a)] $ קיים $c\in [a,b] $ כך ש- $f(c)=y $ . (הערה: אנו לא יודעים אם $f(a)<f(b) $ או $f(b)<f(a) $ אבל בכל מקרה אם אחד מהם מתקיים אז אחת מהקבוצות שבאיחוד המתואר היא ריקה)
+
נניח $f:[a,b]\to\mathbb{R} $ רציפה בקטע (כלומר רציפה בכל נק' בקטע)\\
\end{theorem}
+
אזי לכל $y\in [f(a),f(b)] \cup [f(b),f(a)] $ קיים $c\in [a,b] $ כך ש- $f(c)=y $ .\\
 +
(הערה: אנו לא יודעים אם $f(a)<f(b) $ או $f(b)<f(a) $ אבל בכל מקרה אם אחד מהם מתקיים אז אחת מהקבוצות שבאיחוד המתואר היא ריקה)
 +
\end{thm}
  
 
\begin{proof}
 
\begin{proof}
נניח בה"כ ש- $f(a)<f(b) $ . יהי $y\in [f(a),f(b)] $, ונגדיר את $g(x)=f(x)-y $ . נשים לב ש- $f(c)=y $ אם ורק אם $g(c)=0 $ ולכן נוכיח שקיים $c$ שמאפס את $g$. כעת נגדיר $E=\{x\in [a,b] | g(x)\leq 0 $ ונשים לב ש- $a\in E $. נגדיר $c=\sup E$ ומכאן ש- $\forall n\in \mathbb{N} \exists x_n \in E : c-\frac{1}{n} <x_n \leq c $ . בעצם $c_n\to c $ ומהרציפות של $g$ כסכום של רציפות נובע ש- $g(c_n)=g(c) $ וכיוון ש- $g(c_n)\leq 0 $ גם $g(c)\leq 0 $. כעת נניח בשלילה ש- $g(c)<0 $ ואז מהרציפות $\exists \delta>0 \forall 0<x-c<\delta : |g(x)-g(c)| <-\frac{g(c)}{2} \Rightarrow g(x)<\frac{g(c)}{2} <0 $ אבל זה סותר את זה ש- $c=\sup E $ משום שיש טווח של $x$ים שגדולים ממנו ועדיין $g(x)<0 $. מכאן שבהכרח $g(c)=0 $ ומצאנו את הדרוש
+
נניח בה"כ ש- $f(a)<f(b) $ . יהי $y\in [f(a),f(b)] $, ונגדיר את $g(x)=f(x)-y $.\\
 +
נשים לב ש- $f(c)=y $ אם ורק אם $g(c)=0 $ ולכן נוכיח שקיים $c$ שמאפס את $g$.\\
 +
כעת נגדיר $E=\{x\in [a,b] | g(x)\leq 0\} $ ונשים לב ש- $a\in E $.\\
 +
נגדיר $c=\sup E$ ומכאן ש- $\forall n\in \mathbb{N} \exists x_n \in E : c-\frac{1}{n} <x_n \leq c $ .\\
 +
בעצם $c_n\to c $ ומהרציפות של $g$ כסכום של רציפות נובע ש- $g(c_n)=g(c) $ וכיוון ש- $g(c_n)\leq 0 $ גם $g(c)\leq 0 $. כעת נניח בשלילה ש- $g(c)<0 $ ואז מהרציפות
 +
$$\exists \delta>0 \forall 0<x-c<\delta : |g(x)-g(c)| <-\frac{g(c)}{2} \Rightarrow g(x)<\frac{g(c)}{2} <0 $$
 +
אבל זה סותר את זה ש- $c=\sup E $ משום שיש טווח של $x$ים שגדולים ממנו ועדיין $g(x)<0 $. מכאן שבהכרח $g(c)=0 $ ומצאנו את הדרוש
 
\end{proof}
 
\end{proof}

גרסה מ־17:57, 23 בספטמבר 2014

\begin{thm} נניח $f:[a,b]\to\mathbb{R} $ רציפה בקטע (כלומר רציפה בכל נק' בקטע)\\ אזי לכל $y\in [f(a),f(b)] \cup [f(b),f(a)] $ קיים $c\in [a,b] $ כך ש- $f(c)=y $ .\\ (הערה: אנו לא יודעים אם $f(a)<f(b) $ או $f(b)<f(a) $ אבל בכל מקרה אם אחד מהם מתקיים אז אחת מהקבוצות שבאיחוד המתואר היא ריקה) \end{thm}

\begin{proof} נניח בה"כ ש- $f(a)<f(b) $ . יהי $y\in [f(a),f(b)] $, ונגדיר את $g(x)=f(x)-y $.\\ נשים לב ש- $f(c)=y $ אם ורק אם $g(c)=0 $ ולכן נוכיח שקיים $c$ שמאפס את $g$.\\ כעת נגדיר $E=\{x\in [a,b] | g(x)\leq 0\} $ ונשים לב ש- $a\in E $.\\ נגדיר $c=\sup E$ ומכאן ש- $\forall n\in \mathbb{N} \exists x_n \in E : c-\frac{1}{n} <x_n \leq c $ .\\ בעצם $c_n\to c $ ומהרציפות של $g$ כסכום של רציפות נובע ש- $g(c_n)=g(c) $ וכיוון ש- $g(c_n)\leq 0 $ גם $g(c)\leq 0 $. כעת נניח בשלילה ש- $g(c)<0 $ ואז מהרציפות $$\exists \delta>0 \forall 0<x-c<\delta : |g(x)-g(c)| <-\frac{g(c)}{2} \Rightarrow g(x)<\frac{g(c)}{2} <0 $$ אבל זה סותר את זה ש- $c=\sup E $ משום שיש טווח של $x$ים שגדולים ממנו ועדיין $g(x)<0 $. מכאן שבהכרח $g(c)=0 $ ומצאנו את הדרוש \end{proof}