הבדלים בין גרסאות בדף "קוד:משפט ערך הממוצע של לגרנז'"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
שורה 1: שורה 1:
 
\begin{thm}
 
\begin{thm}
תהי $f\in C[a,b]\cap D(a,b) $ אזי קיימת $c\in (a,b) $ כך ש- $f'(c)=\frac{f(b)-f(a)}{b-a} $ . באופן פיזיקלי, כבר אמרנו שהנגזרת של פונקציית המיקום לפי הזמן היא המהירות, ולכן המשפט אומר שבכל דרך "חלקה" שעושים (בלי עצירות פתאומיות או שינוי מהירות פתאומי) תמיד יש רגע בו המהירות שווה למהירות הממוצעת במהלך כל הנסיעה. באופן גיאומטרי, המשפט אומר שאם מעבירים קו על גרף הפונקציה בין נק' ההתחלה והסוף אז קיימת נקודה באמצע שהמשיק לפונקציה בנקודה מקביל לקו הזה.
+
תהי $f\in C[a,b]\cap D(a,b) $ אזי קיימת $c\in (a,b) $ כך ש- $f'(c)=\frac{f(b)-f(a)}{b-a} $ .
 
\end{thm}
 
\end{thm}
 +
באופן פיזיקלי, כבר אמרנו שהנגזרת של פונקציית המיקום לפי הזמן היא המהירות, ולכן המשפט אומר שבכל דרך "חלקה" שעושים (בלי שינויים פתאומיים במהירות) תמיד יש רגע בו המהירות שווה למהירות הממוצעת במהלך כל הנסיעה. באופן גיאומטרי, המשפט אומר שאם מעבירים קו על גרף הפונקציה בין נק' ההתחלה והסוף אז קיימת נקודה באמצע שהמשיק לפונקציה בנקודה מקביל לקו הזה.
  
 
\begin{proof}
 
\begin{proof}
שורה 10: שורה 11:
  
  
\begin{corollary}
+
\begin{cor}
 
אם $f'(x)=0 $ לכל $x\in (a,b) $ אזי $f(x)=const $ (קבועה)
 
אם $f'(x)=0 $ לכל $x\in (a,b) $ אזי $f(x)=const $ (קבועה)
\end{corollary}
+
\end{cor}
  
 
\begin{proof}
 
\begin{proof}
שורה 18: שורה 19:
 
\end{proof}
 
\end{proof}
  
\begin{corollary}
+
\begin{cor}
אומדן של שינוי פונקציה: תהי $f\in D(a,b)\cap C[a,b] $ כך ש- $|f'(x)|\leq M $ לכל $x\in (a,b) $ , אזי $|f(b)-f(a)|\leq M(b-a) $
+
אם $\forall x\in (a,b) : f'(x)=g'(x) $ אזי $\exists c \forall x : g(x)=f(x)+c $
\end{corollary}
+
\end{cor}
  
 
\begin{proof}
 
\begin{proof}
לפי לגרנז' $\exists c : f'(c)=\frac{f(b)-f(a)}{b-a} \Rightarrow |f(b)-f(a)|=|f'(c)|(b-a)\leq M(b-a) $  
+
נגדיר $F(x)=g(x)-f(x) $ . מתקיים ש- $F'(x)=g'(x)-f'(x)=0 $ ולכן $F(x)=g(x)-f(x)=c $
 +
\end{proof}
 +
\begin{cor}[אומדן של שינוי פונקציה]
 +
תהי $f\in D(a,b)\cap C[a,b] $ כך ש- $|f'(x)|\leq M $ לכל $x\in (a,b) $ , אזי $|f(b)-f(a)|\leq M(b-a) $
 +
\end{cor}
 +
 
 +
\begin{proof}
 +
לפי לגרנז'
 +
$$\exists c : f'(c)=\frac{f(b)-f(a)}{b-a} \Rightarrow |f(b)-f(a)|=|f'(c)|(b-a)\leq M(b-a) $$
 
\end{proof}
 
\end{proof}

גרסה מ־11:28, 2 בספטמבר 2014

\begin{thm} תהי $f\in C[a,b]\cap D(a,b) $ אזי קיימת $c\in (a,b) $ כך ש- $f'(c)=\frac{f(b)-f(a)}{b-a} $ . \end{thm} באופן פיזיקלי, כבר אמרנו שהנגזרת של פונקציית המיקום לפי הזמן היא המהירות, ולכן המשפט אומר שבכל דרך "חלקה" שעושים (בלי שינויים פתאומיים במהירות) תמיד יש רגע בו המהירות שווה למהירות הממוצעת במהלך כל הנסיעה. באופן גיאומטרי, המשפט אומר שאם מעבירים קו על גרף הפונקציה בין נק' ההתחלה והסוף אז קיימת נקודה באמצע שהמשיק לפונקציה בנקודה מקביל לקו הזה.

\begin{proof} נגדיר $F(x)=f(x)-\frac{f(b)-f(a)}{b-a} (x-a) $ ונראה כי $F(a)=F(b)=f(a) $ ולכן מתקיים משפט רול וקיימת $c$ כך ש-

$F'(c)=f'(c)-\frac{f(b)-f(a)}{b-a} = 0 \Rightarrow f'(c)=\frac{f(b)-f(a)}{b-a} $ \end{proof}


\begin{cor} אם $f'(x)=0 $ לכל $x\in (a,b) $ אזי $f(x)=const $ (קבועה) \end{cor}

\begin{proof} נניח בשלילה ש-$f$ לא קבועה ואז $\exists x_1,x_2 : f(x_1)\neq f(x_2) $ (בה"כ $x_1<x_2 $ ) , ולפי משפט ערך הממוצע של לגרנז' קיים $x_1<c<x_2 $ כך ש- $f'(c)=\frac{f(x_2)-f(x_1)}{x_2-x_1}\neq 0 $ משום שהמונה שונה מ-$0$, אבל זה בסתירה לכך שהנגזרת זהותית $0$! \end{proof}

\begin{cor} אם $\forall x\in (a,b) : f'(x)=g'(x) $ אזי $\exists c \forall x : g(x)=f(x)+c $ \end{cor}

\begin{proof} נגדיר $F(x)=g(x)-f(x) $ . מתקיים ש- $F'(x)=g'(x)-f'(x)=0 $ ולכן $F(x)=g(x)-f(x)=c $ \end{proof} \begin{cor}[אומדן של שינוי פונקציה] תהי $f\in D(a,b)\cap C[a,b] $ כך ש- $|f'(x)|\leq M $ לכל $x\in (a,b) $ , אזי $|f(b)-f(a)|\leq M(b-a) $ \end{cor}

\begin{proof} לפי לגרנז' $$\exists c : f'(c)=\frac{f(b)-f(a)}{b-a} \Rightarrow |f(b)-f(a)|=|f'(c)|(b-a)\leq M(b-a) $$ \end{proof}