שינויים

קוד:שארית לגרנז' של פולינום טיילור

נוספו 866 בתים, 20:22, 4 באוקטובר 2014
4 גרסאות יובאו
<latex2pdf>
<tex>קוד:ראש</tex>
 
\begin{thm}
תהי $f\in D^{n+1}(a,b) $ אזי
$$f(x)=\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1} $$
כאשר $c\in[x_0,x] \cup [x,x_0]$ (לא ידוע מי קטן יותר ממי), או במילים אחרות דרך אחרת לכתוב את זה היא\\$\exists 0\leq t\leq 1 : c=x_0+t(x-x_0) $ . במילים אחרות
$$R_n(x,x_0)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1} $$
$$\exists c : \frac{\varphi'(c)}{\psi'(c)}=\frac{\frac{f^{(n+1)}(c)}{n!}(x-c)^n}{(n+1)(x-c)^n}=\frac{f^{(n+1)}(c)}{(n+1)!} =\frac{\varphi(x_0)-\varphi(x)}{\psi(x_0)-\psi(x)}=$$
$$ \frac{0-R_n(x,x_0)-0}{(x-x_0)^{n+1}} \Rightarrow R_n(x) =\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
\end{proof}
<tex>קוד\begin{example}חשב את $\log 1.5 $ בקירוב של 2 ספרות אחרי הנקודה העשרונית.\\פתרון:זנבנסתכל על $f(x)=\log(1+x) $ . נראה כי$$P_7(x,0)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5}-\frac{x^6}{6}+\frac{x^7}{7}$$לפי לגרנז' השארית $f(0.5)-P_7(0.5,0)=R_7(0.5,0)=\frac{f^{(8)}(c)}{8!} (0.5-0)^8 $ עבור\\$0</tex>c<0.5$$$|f^{(8)}(c)|=\left |-\frac{5040}{(1+c)^8}\right | \leq \frac{5040}{(1+0)^5} = 5040 $$(אי השיוויון נכון משום ש-$c\in (0,0.5) $ ) מכאן ש- $$|f(0.5)-P_7(0.5,0)|\leq \frac{5040}{8!} 0.5^8 </latex2pdf>0.001 $$ לכן הפולינום מסדר 7 נותן קירוב טוב מספיק, ואז אם נציב $x=0.5$ נקבל מספר ש-3 הספרות הראשונות שלו אחרי הנקודה הן $0.405$ ולכן אם ניקח את הקירוב ל-2 ספרות אחרי הנקודה נקבל $0.41$ .\end{example}