שיחה:88-222 תשעג סמסטר ב נוביק: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 150: שורה 150:
תודה רבה!
תודה רבה!
::אין צורך בהגדרה מיוחדת למשלים ב-A. ההגדרה למשלים היא תמיד אותה הגדרה, איברים שנמצאים בקבוצה (שלמעלה) ולא בתת קבוצה. במקרה זה נמצאים ב<math>A</math> ולא ב<math>U\cap A</math>.  אם תצייר לעצמך דיאגרמת ון למשל אני בטוח שתוכל לראות את הטענה של המרצה (מתורת הקבוצות) ואח"כ להוכיח אותה פורמלית. למרות שלצורך התרגיל  אפשר להשתמש בטענה הזו ללא הוכחה. --[[משתמש:מני ש.|מני]] 20:52, 20 באפריל 2013 (IDT)
::אין צורך בהגדרה מיוחדת למשלים ב-A. ההגדרה למשלים היא תמיד אותה הגדרה, איברים שנמצאים בקבוצה (שלמעלה) ולא בתת קבוצה. במקרה זה נמצאים ב<math>A</math> ולא ב<math>U\cap A</math>.  אם תצייר לעצמך דיאגרמת ון למשל אני בטוח שתוכל לראות את הטענה של המרצה (מתורת הקבוצות) ואח"כ להוכיח אותה פורמלית. למרות שלצורך התרגיל  אפשר להשתמש בטענה הזו ללא הוכחה. --[[משתמש:מני ש.|מני]] 20:52, 20 באפריל 2013 (IDT)
== תרגיל 6 שאלה 6 סעיף 4 ==
נניח <math> f:X \to Y </math> הומיאומורפיזם.
האם מותר לי להשתמש בעובדה שאם <math> f(A)=B </math> עבור: <math> A \subset X , B \subset Y </math>
אז <math>A \cong  B</math>
או שיש צורך בלהוכיח טענה זו?

גרסה מ־10:41, 21 באפריל 2013

שאלות

שאלה בקשר לסעיף א' בשאלה 1

צ"ל שלכל A מוכל ב-Y מתקיים ([f(f^-1[A מוכל ב-A

איך מתחילים את ההוכחה?

מניחים שלכל A שמוכל ב-Y מתקיים:

y שייך ל- ([f(f^-1[A ומראים ש y שייך לA?

ההכלה נובעת מהגדרות אבל לא הבנתי איך מתייחסים לנתון שלכל A מוכל ב-Y.

תודה רבה!

הטענה היא שההכלה מתקיימת לכל קבוצה A. לביטוי [math]\displaystyle{ f^{-1}[A] }[/math] יש משמעות רק כש A תת קבוצה של Y. אכן, צריך לקחת תת קבוצה שרירותית A של Y ובאמת להראות את ההכלה כפי שציינת ברמה של איברים. ההכלה נובעת מההגדרות אבל צריך להראות איך בדיוק. --מני 01:04, 28 בפברואר 2013 (IST)



שאלה 5

שאני מנסה להוכיח סימטריות אני תמיד מגיע למצב שבו אני מניח אי שליליות. 
אני אמור להניח זאת? אם לא אני לא מבין איך להוכיח את זה?
(לא מתרגל) ניתן להוכיח חיובית, פשוט תצא מהעובדה שהמרחק בין איבר לעצמו הוא אפס.
תודה

תרגיל 1 שאלה 4

האם הפונקציה כפי שהוגדרה בתרגיל: [math]\displaystyle{ d(x,y)= \begin{cases} 0 & x=y \\ \frac {1} {min \{j \in \mathbb {N}:x_j\ne y_j\}} & \ x \ne y \end{cases} }[/math]

שקולה לפונקציה: [math]\displaystyle{ d(i,j)= \begin{cases} 0 & i=j \\ \frac {1} {min \{i,j\}} & \ i \ne j \end{cases} }[/math]? האינדקסים ב-x וב-y קצת מבלבלים אותי.

(לא מתרגל) לפי מה שאני מבין, לא. האינדקסים יכולים להיות שווים והפונקציה עדיין לא תתאפס-האיברים צריכים להיות שונים
הבנתי את הטעות שלי (לא שמתי לב, שבשאלה הגדירו שכל איבר הוא בעצם סדרה). תודה.

תרגיל 2 שאלה 5

בסעיף א', האם [math]\displaystyle{ \sigma_Y(y_1,y_2) = \sigma(y_1,y_2) }[/math] כאשר [math]\displaystyle{ y_1,y_2 \in Y }[/math] ??
או שהמטריקות יכולות להיות שונות לחלוטין?

ההגדרה של תת מרחב מטרי ניתנה בהרצאה. --מני 12:24, 12 במרץ 2013 (IST)

תרגיל 3

כשמדברים על קבוצות פתוחות וסגורות בR^n מהי המטריקה??,האוקילדית??,ועוד שאלה,האם מותר להשתמש בתכונות של פונקציות רציפות בR^n (שגם סכום,הרכבה,כפל וכו' רציף)?

כן וכן.--מני 12:06, 15 במרץ 2013 (IST)

תרגיל 3 שאלה אחרונה

האם מדובר בפונקציה (f(x,y ? והאם הכוונה ש – f=1 כאשר x*y=0?

 כן, זה היה אמור להיות [math]\displaystyle{ f(x,y) }[/math]. וכן גם לשאלה השניה. --לואי 14:12, 20 במרץ 2013 (IST)

האם צריך להוכיח שדטרמיננטה היא פונקציה רציפה?

צריך להסביר למה היא רציפה. --מני 13:24, 25 במרץ 2013 (IST)

תרגיל 3 שאלה 6

האם בשאלה 6 מדובר על המטריקות האוקלידיות הסטנדרטיות על [math]\displaystyle{ \mathbb {R} }[/math] ועל [math]\displaystyle{ \mathbb {R}^2 }[/math] או על מטריקות כלשהן שמוגדרות על מרחבים אלו?

מדובר באוקלידיות. --מני 10:00, 28 במרץ 2013 (IST)

תרגיל 3 שאלה 3

למה התכוונתם ב (a)n לא הבנתי..כאילו סדרה של סדרות או סדרה?

סדרה רגילה של איברים ממשיים. --מני 10:00, 28 במרץ 2013 (IST)

תרגיל 4 שאלה 4

יש לי תחושה שחסר הנתון [math]\displaystyle{ x\notin A }[/math].

- נכון, רשמנו הערה מעל לתרגיל. תודה :) --לואי 19:59, 6 באפריל 2013 (IDT)

תרגיל 5- שאלות 2, 3

כשמוכיחים את התכונות הדרושות לטופולוגיה צריך להוכיח גם את הטענות מתורת הקבוצות שמשתמשים בהן בדרך?

תודה

השאלה איזו טענות מוכיחים בדרך. זה קצת כללי מדי. אם זה דה מורגן, חשבון עוצמות סטנדרטי או דברים ברמה הזו שראיתם נניח כבר בבדידה/תורת הקבוצות אפשר בלי הוכחה. אם יש טענה ספציפית שיש לגביה ספק אשמח לדעת. --מני 13:07, 12 באפריל 2013 (IDT)

יכול להיות שיש טעות ב2 ב' 1? חסר Z ב-t

היתה טעות. שימו לב להערה מחוץ לקובץ. --מני 17:27, 12 באפריל 2013 (IDT)

תרגיל 5 שאלה 2 סעיף א

הייתי מעוניין לדעת האם יש סיבה שבגללה הקבוצה [math]\displaystyle{ S }[/math] הוגדרה כפי שהיא הוגדרה בתרגיל?

בפתרון יצא לי שלא התייחסתי בכלל לאופן שבו הוגדרה [math]\displaystyle{ S }[/math].

כלומר, אם בתרגיל היה נתון ש [math]\displaystyle{ S }[/math] היא ת"ק כלשהי של [math]\displaystyle{ \mathbb R }[/math] הפתרון שלי היה נשאר אותו דבר.

אתה צודק. יכול להיות שבעתיד נרצה להראות תכונה מסוימת (שלא הוזכרה עדיין בקורס) לגבי המרחב הזה (עם הסדרה) כפי שהוצג כאן ואז יהיה ברור למה המרחב הוגדר דווקא בצורה זו. --מני 00:02, 15 באפריל 2013 (IDT)

תרגיל 5 שאלה 2 סעיף ב

האם הכוונה ש [math]\displaystyle{ O_n \notin \tau }[/math] לכל [math]\displaystyle{ 1\gt n \in \mathbb{Z} }[/math]?

כתבנו כנראה לא מדוייק. הכוונה דווקא [math]\displaystyle{ O_n \in \tau }[/math] לכל [math]\displaystyle{ n \in \mathbb{Z} }[/math]. כלומר [math]\displaystyle{ \tau=\{\mathbb{Z},\emptyset\}\cup \{O_n: n\in \mathbb{Z}\} }[/math] --מני 18:11, 15 באפריל 2013 (IDT)

תרגיל 6 שאלה 6 סעיף 4

הסיקו כי כל כדור פתוח [math]\displaystyle{ B(a,\epsilon) }[/math] הומיאומורפי ל- [math]\displaystyle{ B(0,1) }[/math].

האם הכדור השני, [math]\displaystyle{ B(0,1) }[/math] , נמצא ב- [math]\displaystyle{ X }[/math] או ב- [math]\displaystyle{ \mathbb {R} }[/math]?

ב [math]\displaystyle{ X }[/math]. המרכז של [math]\displaystyle{ B(0,1) }[/math] הוא וקטור האפס. --מני 20:27, 20 באפריל 2013 (IDT)

תרגיל 6 שאלה 4 סעיף ב

האם אפשר להשתמש באותה דוגמה על מנת להפריך את שני המקרים?

כן. --מני 20:28, 20 באפריל 2013 (IDT)

הומאומורפיזם

הוכחנו בכיתה שכל הקטעים הפתוחים ב [math]\displaystyle{ {R} }[/math] הומאומורפים זה לזה. האם זה נכון גם לR^n? ז"א האם כל הקבוצות הפתוחות בR^n הומאומורפיות אחת לשניה?

תודה!

היי

הקטעים הפתוחים הם לא כל הקבוצות הפתוחות אלא רק הכדורים הפתוחים. ב [math]\displaystyle{ \mathbb R }[/math] למשל הקבוצה הפתוחה [math]\displaystyle{ (1,2) }[/math] לא הומיאמורפית לקבוצה הפתוחה [math]\displaystyle{ (1,2)\cup (3,4) }[/math]. אם מדברים רק על כדורים פתוחים אז הטענה אכן נכונה ב[math]\displaystyle{ \mathbb R }[/math] וב

[math]\displaystyle{ \mathbb R^{n} }[/math]. למעשה אתם מוכיחים בש"ב שבכל מרחב נורמי כל שני כדורים פתוחים הומיאומורפיים ואז מקבלים את התוצאה ב[math]\displaystyle{ \mathbb R^n }[/math] כמקרה פרטי. --מני 20:43, 20 באפריל 2013 (IDT)

בקשר לשאלה 2

בהרצאה המרצה נתן את הטענה הבאה :

u מוכלת ב-X אז

(u משלים ב-X ) חיתוך A שווה ל- (u חיתוך A) משלים ב-A


מהי ההגדרה למשלים ב- A (ידוע ש A תת מרחב של X)?

אני מנסה להראות הכלה דו כיוונית אבל אני לא יודע מה זה אומר (u חיתוך A) משלים ב-A?

תודה רבה!

אין צורך בהגדרה מיוחדת למשלים ב-A. ההגדרה למשלים היא תמיד אותה הגדרה, איברים שנמצאים בקבוצה (שלמעלה) ולא בתת קבוצה. במקרה זה נמצאים ב[math]\displaystyle{ A }[/math] ולא ב[math]\displaystyle{ U\cap A }[/math]. אם תצייר לעצמך דיאגרמת ון למשל אני בטוח שתוכל לראות את הטענה של המרצה (מתורת הקבוצות) ואח"כ להוכיח אותה פורמלית. למרות שלצורך התרגיל אפשר להשתמש בטענה הזו ללא הוכחה. --מני 20:52, 20 באפריל 2013 (IDT)

תרגיל 6 שאלה 6 סעיף 4

נניח [math]\displaystyle{ f:X \to Y }[/math] הומיאומורפיזם.

האם מותר לי להשתמש בעובדה שאם [math]\displaystyle{ f(A)=B }[/math] עבור: [math]\displaystyle{ A \subset X , B \subset Y }[/math] אז [math]\displaystyle{ A \cong B }[/math]

או שיש צורך בלהוכיח טענה זו?