84-172 מתמטיקה לכימאים ב/סילבוס

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

מבחנים לדוגמא

לוח ההרצאות

נושאי הרצאות

כאן יופיעו נושאי ההרצאות המשוערים לסמסטר.

חלק 1: שדות, מערכות משוואות ומטריצות

שדות

  • מושג השדה, המספרים המרוכבים


להרחבה ראו פרק 1 בקישור https://linear.math-wiki.com

מטריצות

  • פתרון מערכות משוואות באמצעות מטריצות (מציאת בסיס).
  • דרגת מטריצה.
  • מציאת בסיס לתמונה.
  • כפל מטריצות.
  • מטריצות הופכיות.

חלק 2: וקטורים ופונקציות לינאריות

מרחבים וקטוריים ומכפלה פנימית

  • מרחבים וקטוריים (חיבור וקטורים וכפל בסקלר)


  • מכפלה פנימית (סקלרית) והנורמה המושרית.
  • נבחן כל אחת מהפעולות באופן אלגברי ובאופן גאומטרי.
  • אי שיוויון קושי-שוורץ
  • בסיס הוא קבוצת וקטורים המייצרת את הקבוצה, ואין בה דבר מיותר.
  • מימד הוא מספר האיברים בבסיס.

העתקות לינאריות

  • פונקציות לינאריות
    • [math]\displaystyle{ T(x,y)=\left(\frac{x-y}{\sqrt{2}},\frac{x+y}{\sqrt{2}}\right) }[/math] סיבוב נגד כיוון השעון בזוית 45 מעלות.
    • [math]\displaystyle{ T(x,y)=\left(\frac{x+y}{2},\frac{x+y}{2}\right) }[/math] היטל על הישר y=x.


  • גרעין ותמונה (מקיימים תכונות של תתי מרחב)


הצגת פונקציות לינאריות באמצעות מטריצות


  • גרעין זו ההצגה האלגברית, תמונה היא ההצגה הפרמטרית של ישרים ומישורים.


חלק 3: לכסון מטריצות

לכסון מטריצות

  • מהו לכסון מטריצות ולמה הוא טוב (למשל העלאת מטריצה בחזקה).


  • פולינום אופייני, ערכים עצמיים, וקטורים עצמיים.
  • אלגוריתם ללכסון מטריצה.

חלק 4: חדו"א בשני משתנים

מבוא

  • גרף מהצורה [math]\displaystyle{ z=f(x,y) }[/math]
  • גבולות ורציפות

גזירות

  • נגזרות חלקיות
  • דיפרנציאביליות
  • מישור משיק


  • נגזרות כיווניות והגרדיאנט


  • כלל השרשרת ומד"ר מדוייקת


בעיות קיצון

  • קיצון מקומי
  • קיצון עם אילוץ

חלק 5: אינטגרלים כפולים ומשולשים

  • אינטגרלים כפולים ומשולשים ומשמעותם
  • החלפת סדר האינטגרציה
  • שינוי קואורדינטות