הבדלים בין גרסאות בדף "88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/6"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(דוגמא)
(קואורדינטות)
שורה 1: שורה 1:
 
==קואורדינטות==
 
==קואורדינטות==
נסביר את כל המושגים תוך כדי שימוש בדוגמא קבועה: <math>V=\mathbb{R}^2, S_{\mathbb{R}^2}=\{(1,0),(0,1)\},D=\{(1,1),(1,-1)\}</math>, מתקיים ששתי הקבוצות מהוות בסיס למרחב V.
 
 
 
משפט: יהא V מ"ו מעל שדה F, יהי <math>B=\{v_1,...,v_n\}</math> בסיס ל-V ויהי <math>v\in V</math> וקטור. אזי ל-v יש הצגה יחידה כצירוף לינארי לפי הבסיס B. כלומר, אם מתקיים <math>v=a_1v_1+...+a_nv_n=b_1v_1+...+b_nv_n</math> אזי בהכרח <math>\forall i:a_i=b_i</math>. (קל להוכיח את זה על ידי חיסור הצד הימני של המשוואה מהצד השמאלי, מקבלים צירוף לינארי שמתאפס עם מקדמים <math>a_i-b_i</math>.)
 
משפט: יהא V מ"ו מעל שדה F, יהי <math>B=\{v_1,...,v_n\}</math> בסיס ל-V ויהי <math>v\in V</math> וקטור. אזי ל-v יש הצגה יחידה כצירוף לינארי לפי הבסיס B. כלומר, אם מתקיים <math>v=a_1v_1+...+a_nv_n=b_1v_1+...+b_nv_n</math> אזי בהכרח <math>\forall i:a_i=b_i</math>. (קל להוכיח את זה על ידי חיסור הצד הימני של המשוואה מהצד השמאלי, מקבלים צירוף לינארי שמתאפס עם מקדמים <math>a_i-b_i</math>.)
  

גרסה מ־21:11, 29 ביולי 2011

קואורדינטות

משפט: יהא V מ"ו מעל שדה F, יהי B=\{v_1,...,v_n\} בסיס ל-V ויהי v\in V וקטור. אזי ל-v יש הצגה יחידה כצירוף לינארי לפי הבסיס B. כלומר, אם מתקיים v=a_1v_1+...+a_nv_n=b_1v_1+...+b_nv_n אזי בהכרח \forall i:a_i=b_i. (קל להוכיח את זה על ידי חיסור הצד הימני של המשוואה מהצד השמאלי, מקבלים צירוף לינארי שמתאפס עם מקדמים a_i-b_i.)

הגדרה: יהיו V,B וv כמו במשפט. אזי וקטור הקואורדינטות של v לפי בסיס B, מסומן [v]_B\in\mathbb{F}^n מוגדר להיות [v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix} כאשר v=a_1v_1+...+a_nv_n ההצגה הלינארית היחידה הקיימת לפי המשפט.


חשוב לזכור [v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix} אם"ם v=a_1v_1+...+a_nv_n

תרגיל קל אבל חשוב הוא להראות שלכל בסיס B מתקיים ש v=0 אם"ם [v]_B=0.


הערה: במרחבים הוקטוריים שאנו נעבוד איתם יש בסיסים סטנדרטיים. הייחוד של הבסיסים הסטנדרטיים הוא שקל מאד לחשב קואורדינטות לפיהם. נסתכל במרחבים וקטורים ובבסיסים הסטנדרטיים שלהם:


מרחב וקטורי בסיס סטנדרטי
\mathbb{F}^n (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)
\mathbb{F}^{m\times n} 
\begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},
\begin{pmatrix}0 & 1 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},...,
\begin{pmatrix}0 & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},...,
\begin{pmatrix}0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}
\mathbb{F}_n[x] 1,x,x^2,...,x^n


דוגמא. חשב את הקואורדינטות של הוקטור v=1+2x-x^2 לפי הבסיס הסטנדרטי S של \mathbb{R}_3[x]. למעשה הפולינום כמעט מוצג כצירוף לינארי של איברי הבסיס:

v=a_1v_1+a_2v_2+a_3v_3+a_4v_4 = 1\cdot 1 + 2\cdot x + (-1)\cdot x^2 + 0\cdot x^3.

לפיכך [v]_S=(1,2,-1,0).


דוגמא. חשב את הקואורדינטות של הוקטור (a,b,c) לפי הבסיס הסטנדרטי S של \mathbb{F}^n. קל לראות ש [v]_S = (a,b,c).

תרגיל

יהא V מ"ו ויהי B בסיס לו. יהיו u_1,...,u_k\in V וקטורים כלשהם. הוכח:

  • u_1,...,u_k בת"ל אם"ם [u_1]_B,...,[u_k]_B בת"ל
  • w\in span\{u_1,...,u_k\} אם"ם w\in span\{[u_1]_B,...,[u_k]_B\}

נוכיח תרגיל זה בהמשך, לאחר שנלמד על העתקות לינאריות. כעת נניח שהוא נכון ונתרכז בכלי החישובי המשמעותי שקיבלנו; כל בדיקה/חישוב של תלות לינארית או פרישה בכל מרחב וקטורי (מטריצות, פולינומים, פונקציות) יכול בעצם להעשות במרחב הוקטורי המוכר והנוח \mathbb{F}^n.

דוגמא.

האם הפולינומים v_1=1+x^2,v_2=1-x,v_3=x+x^2 תלויים לינארית?

דבר ראשון, נעבור למרחב הקואורדינטות. מכיוון שבחירת הבסיס היא לשיקולנו, נבחר את הבסיס הסטנדרטי S של הפולינומים איתו קל לעבוד. מתקיים ש [v_1]_S=(1,0,1),[v_2]_S=(1,-1,0),[v_3]=(0,1,1)

הוכחנו בשיעור שעבר שוקטורים "רגילים" ת"ל אם"ם המטריצה שהם השורות שלה אינה הפיכה אם"ם הצורה המדורגת של המטריצה מכילה שורת אפסים. לכן, נשים את וקטורי הקואורדינטות בשורות מטריצה ונדרג.

\begin{pmatrix}1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1\end{pmatrix}

R_3-R_1,R_3+R_2

\begin{pmatrix}1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix}


לכן וקטורי הקואורדינטות תלויים לינארית ולכן הפולינומים עצמם תלויים לינארית. נסכם את התהליך:

אלגוריתם לבדיקת תלות לינארית בין וקטורים

  1. הפוך את הוקטורים לוקטורי קואורדינטות לפי הבסיס הסטנדרטי המתאים
  2. שים את וקטורי הקואורדינטות בשורות מטריצה A
  3. הבא את המטריצה לצורה מדורגת
  4. אם באיזה שלב קיבלת שורת אפסים סימן שהוקטורים תלויים לינארית
  5. אם הגעת לצורה מדורגת ללא שורת אפסים סימן שהוקטורים בלתי תלויים לינארית