שינויים

הייתה טעות בדוגמה של CNF בC_2. התייחסות ל1 כמו שהוא ו0 כשלילה, כשזה צריך להיות הפוך.
פיתרון: מספיק, <math>\Rightarrow </math>
 
===תרגיל===
(a) כדי שלזכות בלוטו _____ למלא כרטיס לוטו.
 
(b) כדי שהיה שקט בכיתה _____ ללחוץ mute all
 
(c) לקבל ציון עם 3ספרות בקורס _____ לקבל 100 בקורס.
==דרכי הוכחה==
נשים לב כי בשביל לקבוע אם הפסוק <math>\forall x P(x)</math> אנחנו צריכים לדעת איזה x ים "חוקיים" (בהנחה שאנחנו יודעים את P) ומכאן שנעבור להגדרות הבאות.
===הגדרות הקשורות לקבוצותתרגיל===[אפשר להסתדר בלי להיכנס לנושא הקבוצות ולכן כדאי לדלג על זה. תלמידים שזה היכרותם הראשונה עם החומר מבינים טוב מזה קבוצת השלמים גם בלי לפרט יותר מידי] הצרינו את הפסוקים
ההגדרה האינטואיטיבית לקבוצה הינה (a) "אוסף של איבריםכל שתי נקודות שונות קובעות ישר".בקבוצה אין משמעות לסדר האיברים, ואיבר אינו יכול להופיע פעמיים. דוגמאות ל3 קבוצות באמצעות הפרדיקט הדו-מקומי P(קבוצות נוהגים לסמן בין 2 סוגריים מסולסלותx,l):- x נמצא ב l כאשר המשתנה x הוא נקודה ו l הוא ישר.
<math>\{1,\mathrm{horse},3\}</math>, <math>\{1,2,3\}</math> ו<math>\{1,\{2,3\},\{\}\}</math>(b) "כל שתי נקודות שונות קובעות ישר אחד ויחיד"
איבר ה'''שייך''' לקבוצה אנו מסמנים בסימן <math>\in</math>. למשל <math>1\in\{1,2,3\}</math>, ואילו <math>4\notin\{1,2,3\}</math>. שימו לב שגם <math>1\notin\{\{1,2,3\}\}</math> שכן האיבר היחיד בקבוצה זו הינה הקבוצה <math>\{1,2,3\}</math>.
*אומרים שקבוצה A '''מוכלת''' בקבוצה B (מסומן <math>A \subseteq B</math>) אם כל האיברים בA הם גם איברים בB.
*'''חיתוך''' של שתי קבוצות A ו B הינו אוסף האיברים השייכים גם לA וגם לB (מסומן <math>A\cap B</math>).
*'''איחוד''' של שתי קבוצות A ו B הינו אוסף האיברים השייכים לA או לB (מסומן <math>A\cup B</math>).
*סדר המשתנים בתוך הפרדיקט, למשל הפסוק <math>\forall x\forall y \exists z : (x<y)\to R(x,y,z)</math> נכון גם כשהמשתנים מגיעים מהשלמים.
====תרגיל====
[אפשר לדלג בשיעור על לוגיקה, זה מתאים לתירגול בקבוצות] הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
 
פתרון <math>a\in A \or a\in B</math>
 
*הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB
הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים <math>\mathbb{N}\subseteq\mathbb{Z}</math>, והשלמים מוכלים בממשיים <math>\mathbb{Z}\subseteq\mathbb{R}</math>).
*הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
 
פתרון: <math>\forall c [c\in C \rightarrow (c\in A \and c \in B)]</math>
 
*הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB
==== תרגיל ====
הערה: סדר הכמתים הוא חשוב (כמו בעברית) - לדוגמא: יש הבדל בין "לכל סיר קיים מכסה" לבין "קיים מכסה שמתאים לכל סיר".דוגמא: הצרן את המשפט "לכל מספר טבעי יש מספר טבעי הגדול ממנו" פתרון: <math>\forall n\in\mathbb{N}\,\exists m\in\mathbb{N}:n<m</math> לעומת זאת <math>\exists m\in\mathbb{N}\,\forall n\in\mathbb{N}:n<m</math> פירושו שקיים מספר טבעי שגדול מכל המספרים הטבעיים.
 
===תרגיל (בהרצאה)===
.3 נתונים 4 קלפים שבצד א יש מספר )בין 1 ל 10( ובצד ב יש צבע )ירוק או אדום(. אני טוען: "כל קלף שבצד א יש מספר זוגי הצד השני שלו ירוק".הצרינו את הפסוק בעזרת הפרדיקטים P(x) המביע "צד א של קלף x הוא זוגי" ו Q(x) המביע "צד ב של קלף x הוא ירוק". מה השלילה של הפסוק?בהיתן שרואים 2,3 ירוק ואדום. אילו קלפים הכרחי ומספיק להפוך כדי לוודא את נכונות הטענה.
====תרגיל====
הוכיחו או הפריכו:
דוגמאות של הצרנת ושלילת המושגים 'תלות לינארית', 'גבול סדרה', 'חח"ע', וכדומה
==צורות נורמליות: CNF ,DNF(אם רלוונטי לקורס שאתם לוקחים. אם לא שמעתם על הדברים האלה - תדלגו)== 
ישנן שתי "צורות נורמליות" להצגת '''כל''' פסוקית - DNF ו CNF.
באופן דומה נייצר <math>C_2,C_3,C_4,C_5</math> עבור שורות 2 , 5, 7 ו-8:
<math>C_2= \lnot x_1 \lor \lnot x_2 \lor \lnot x_3, C_3=\lnot x_1\lor \lnot x_2 \lor x_3</math>
<math> C_4=x_1 \lor \lnot x_2 \lor \lnot x_3, C_5= \lnot x_1 \lor \lnot x_2 \lor \lnot x_3</math>
עריכה אחד