88-212 תשפא סמסטר ב: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 78: | שורה 78: | ||
'''תשובה:''' | '''תשובה:''' | ||
כן. אפשר למשל לקחת <math>R=F[x],S=F[x,y]</math>. | כן. אפשר למשל לקחת <math>R=F[x],S=F[x,y]</math>. | ||
רעיון ההוכחה: שני החוגים <math>R</math> ו-<math>S</math> שכתבנו הם תחומי פריקות יחידה. לכן המונואידים הכפליים שלהם איזומורפיים למכפלה ישרה של <math>\mathbb{N}\cup\{0\}</math>, לפי כמות האיברים האי-פריקים בכל אחד מהחוגים. אבל בשניהם יש אותה עוצמה של איברים אי-פריקים, לכן המונואידים הכפליים איזומורפיים. | |||
שורה 96: | שורה 98: | ||
השאלה הזו נהיית מעניינת יותר אם עוברים לחוגים בלי יחידה. שם אין לנו מיון מלא של כל החוגים ההמילטוניים ללא יחידה, אבל יש עבודות בנושא. | השאלה הזו נהיית מעניינת יותר אם עוברים לחוגים בלי יחידה. שם אין לנו מיון מלא של כל החוגים ההמילטוניים ללא יחידה, אבל יש עבודות בנושא. | ||
==חומר נוסף== | ==חומר נוסף== |
גרסה מ־07:26, 11 במאי 2021
מרצה: פרופ' מיכאל שיין.
מתרגל: גיא בלשר.
שעות קבלה: בתיאום מראש.
קישורים
- שאלות ותשובות (כן! גם אתם יכולים לשאול ולענות.)
הודעות
במהלך הקורס יתקיימו שני בחנים, בתאריכים:
- 29.4.2021 - בשעה 18:00
- 20.5.2021 - בשעה 18:00
החומר ופרטים נוספים יפורסמו לקראת הבחנים.
- העליתי לכם תרגול השלמה ותרגיל בית המתאים לו. בתרגול הבא נעבור על הנושא בזריזות, לכן מומלץ לקרוא את התרגול ולעבור עליו לפני.
בוחן 1
טופס הבוחן, ופתרונו. שימו לב שלשאלות מסוימות יכולות להיות מספר תשובות, ולא כולן כתובות פה.
הבוחן הראשון יתקיים ביום חמישי, 29.4, בשעה 18:00. הנושאים לבוחן הם כל מה שלמדנו בהרצאה ובתרגול עד ה-19.4, כולל (החומר של יריעות אלגבריות הוא בגדר העשרה). בבוחן לא תצטרכו לזכור הוכחות משפטים מן ההרצאה, אך כמובן תצטרכו לזכור את ההגדרות ואת המשפטים, וייתכנו הוכחות של טענות קצרות יותר שהופיעו בהרצאה ובתרגול.
בעמודי הקורס מהשנים הקודמות תוכלו למצוא מערכי תרגול ותרגילי בית נוספים. רוב התרגילים שהיו בתרגילים שלכם חופפים לכאלו שהיו בשנים הקודמות, אך יש מעט הבדלים. מבחינת בחנים, הבחנים של תשע"ח ושל תשע"ט שניהם מכסים את החומר שהגענו אליו. הבוחן של תשע"ז מתייחס גם לנושאים שפחות התעסקנו בהם. השאלות שכן בחומר הן שאלה 1 ושאלה 2ב' שאפשר לפתור בלי סעיף א' (וניסוח אלטרנטיבי לסעיף א': הוכיחו שבחוג [math]\displaystyle{ F[x]/\langle x^2\rangle }[/math] יש אידאל מקסימלי יחיד).
שימו לב שצריך להצטייד בתעודה מזהה, מצלמה אחת מכוונת לפנים ומצלמת צד אחת (כמו במבחנים שהיו בסמסטר הקודם). תהיה השגחה מטעם מדור בחינות.
בהצלחה!
תרגילי בית
תרגילי הבית אינם להגשה, אך מומלץ מאוד לפתור אותם על מנת לעקוב אחרי הנעשה בקורס. בנוסף, ייתכן שבחלק מהתרגולים נשתמש בטענות ובדוגמאות המופיעות בתרגילי הבית.
- תרגיל 1, פתרון תרגיל 1
- תרגיל 2, פתרון תרגיל 2
- תרגיל 3, פתרון תרגיל 3
- תרגיל 4, פתרון תרגיל 4
- תרגיל 5, פתרון תרגיל 5
- תרגיל 6
- תרגיל 7
- תרגיל 8
קבצי הרצאות
- הרצאה 1, 8.3.2021
- הרצאה 2, 10.3.2021
- הרצאה 3, 15.3.2021
- הרצאה 4, 17.3.2021
- הרצאה 5, 5.4.2021
- הרצאה 6, 7.4.2021
- הרצאה 7, 12.4.2021
- הרצאה 8, 19.4.2021
- הרצאה 9, 21.4.2021
- הרצאה 10, 26.4.2021
- הרצאה 11, 28.4.2021
- הרצאה 12, 3.5.2021
- הרצאה 13, 5.5.2021
קבצי תרגולים
השלמה מתרגול 4: הוכחה מלאה לכך ש-[math]\displaystyle{ \mathbb{C}[x,y]/\langle xy-1\rangle\cong\mathbb{C}[t,t^{-1}] }[/math], נמצאת פה.
תשובות לשאלות מהתרגול
שאלה: האם קיימים חוגים לא איזומורפיים [math]\displaystyle{ R,S }[/math] כך שהחבורות החיבוריות שלהם איזומורפיות וגם המונואידים הכפליים שלהם (כלומר [math]\displaystyle{ R\setminus\{0\},S\setminus\{0\} }[/math] ביחס לפעולות הכפל המתאימות) איזומורפיים?
תשובה: כן. אפשר למשל לקחת [math]\displaystyle{ R=F[x],S=F[x,y] }[/math].
רעיון ההוכחה: שני החוגים [math]\displaystyle{ R }[/math] ו-[math]\displaystyle{ S }[/math] שכתבנו הם תחומי פריקות יחידה. לכן המונואידים הכפליים שלהם איזומורפיים למכפלה ישרה של [math]\displaystyle{ \mathbb{N}\cup\{0\} }[/math], לפי כמות האיברים האי-פריקים בכל אחד מהחוגים. אבל בשניהם יש אותה עוצמה של איברים אי-פריקים, לכן המונואידים הכפליים איזומורפיים.
שאלה:
האם מכפלה נקודתית של קוסטים שווה למכפלה של קוסטים כפי שהגדרנו אותה? כלומר, האם [math]\displaystyle{ (a+I)(b+I)=ab+I\overset{?}{=}\{(a+x)(b+y)\mid x,y\in I\} }[/math]?
תשובה:
לא! באופן כללי יש הכלה של המכפלה הנקודתית (אגף ימין) באגף שמאל, אך לא חייב להיות שוויון. ניקח למשל [math]\displaystyle{ R=\mathbb{Z} }[/math] ו-[math]\displaystyle{ I=4\mathbb{Z} }[/math]. אפשר לבדוק שבמקרה הזה [math]\displaystyle{ (2+4\mathbb{Z})^2=4\mathbb{Z} }[/math] לפי הגדרת הכפל שלנו, אך [math]\displaystyle{ 0 }[/math] אינו מופיע כאיבר במכפלה הנקודתית (כי אף קוסט אינו מכיל את [math]\displaystyle{ 0 }[/math]).
שאלה:
איך נראה חוג שבו כל תת-חוג הוא אידאל? (לחוגים שמקיימים את התכונה הזו קוראים חוגים המילטוניים, ובאנגלית בקיצור H-rings).
תשובה: נראה כי חוג כזה חייב להיות [math]\displaystyle{ \{0\} }[/math], [math]\displaystyle{ \mathbb{Z}/n\mathbb{Z} }[/math] או [math]\displaystyle{ \mathbb{Z} }[/math]. נניח שהחוג שלנו הוא לא חוג האפס, ונסתכל על תת-החוג [math]\displaystyle{ S }[/math] הנוצר על ידי [math]\displaystyle{ 1 }[/math]. זו בעצם התמונה של ההומומורפיזם היחיד [math]\displaystyle{ \mathbb{Z}\to R }[/math]. לפי ההנחה, [math]\displaystyle{ S }[/math] חייב להיות אידאל. אבל אז לכל [math]\displaystyle{ a\in R }[/math] מתקיים [math]\displaystyle{ a=a\cdot 1\in S }[/math]. לכן [math]\displaystyle{ R=S }[/math]. מפה אפשר לקבל את הטענה בקלות.
השאלה הזו נהיית מעניינת יותר אם עוברים לחוגים בלי יחידה. שם אין לנו מיון מלא של כל החוגים ההמילטוניים ללא יחידה, אבל יש עבודות בנושא.
חומר נוסף
- חוברת מערכי תרגול משנת תשע"ח גרסה 1.15, נכתבה על ידי תומר באואר. שימו לב כי אמנם ההתחלה תהיה דומה, אך במהלך הקורס יהיו שינויים יותר משמעותיים במערכי התרגול, בהתאם לקצב ההתקדמות ולנושאים שיילמדו השנה.
- העשרה: מאמר עם הוכחה שו[math]\displaystyle{ \dim R+1\leq\dim R[x]\leq 2\dim R+1 }[/math] נמצא כאן (משפט 2). אפשר לנסות לקרוא גם את ההמשך, אבל הוא מכיל מושגים שלא התייחסנו אליהם בינתיים.