חדוא 1 - ארז שיינר: הבדלים בין גרסאות בדף
(208 גרסאות ביניים של 6 משתמשים אינן מוצגות) | |||
שורה 1: | שורה 1: | ||
[[88-132 חשבון אינפיניטיסימלי 1]] | [[88-132 חשבון אינפיניטיסימלי 1]] | ||
אהבתם חדו"א 1? אז תעופו על [[חדוא 2 - ארז שיינר|חדו"א 2]]! | |||
=תרגילי הכנה למבחן ופתרונותיהם= | |||
*[[מדיה:22Calc1QnA.pdf| עשרות תרגילי הכנה למבחן עם פתרונות מלאים]] | |||
=מבחנים ופתרונות= | =מבחנים ופתרונות= | ||
===מערכי תרגול עם פתרונות=== | |||
*[[חשבון אינפיניטיסימלי 1 - מערך תרגול|מערכי תרגול]] | |||
===מבחנים של מתמטיקה=== | |||
*[[מדיה:מועד_א_אינפי_1_תיכוניסטים_תשפא.pdf|מבחן מועד א' החממה תשפ"א]], [[מדיה:Solמועד_א_אינפי_1_תיכוניסטים_תשפא.pdf|פתרון]] | |||
*[[מדיה:מועד_ב_אינפי_1_תיכוניסטים_תשפא.pdf|מבחן מועד ב' החממה תשפ"א]], [[מדיה:solמועד_ב_אינפי_1_תיכוניסטים_תשפא.pdf|פתרון]] | |||
*[[מדיה:21HamamaExmpTest.pdf|פתרון מבחן לדוגמא החממה תשפ"א]] | |||
*[[מדיה: Infi1 tihon 2019A.pdf |מבחן מועד א תשע"ט]], [[מדיה: Infi1 tihon 2019Asol.pdf |פתרון]] | |||
*[[מדיה:17Infi1DumbTest.pdf|מבחן דמה תשע"ז]], [[מדיה:17Infi1DumbTestSol.pdf|פתרון]] | |||
*[[מדיה:17Infi1TestA.pdf|מבחן מועד א' תשע"ז]], [[מדיה:17Infi1TestASol.pdf|פתרון]] | |||
*[[מדיה:17Infi1TestB.pdf|מבחן מועד ב' תשע"ז]], [[מדיה:17Infi1TestBSol.pdf|פתרון]] | |||
*[[מדיה:Calc1_2016a_exam.pdf | מבחן מועד א' תשע"ו]], [http://u.cs.biu.ac.il/~tsaban/Pdf/Infi2_76aSol.pdf פתרון המרצה], [[מדיה:Calc1_2016a_sols.pdf | פתרון המתרגלים]], [[מדיה:Calc1_2016a_sols_erez.pdf | פתרון ארז שיינר]] | |||
*[[מדיה:אינפי_1_-_מועד_א%27_תשעג.pdf|מבחן מועד א' תשע"ג]], [[מדיה:Infi1TashagMoedASol.pdf|פתרון]] | |||
*[[מדיה: infi1Exams3.pdf | מבחן מועד ב' תשע"ג]], [[מדיה: infi1Exams3Sol.pdf | פתרון חלקי]] | |||
*[[88-132 אינפי 1 סמסטר א' תשעב/דמה1|מבחן דמה למתמטיקאים תשע"ב]], [[מדיה:tashabfaketestAsol.pdf|פתרון]] | |||
*[[88-132 אינפי 1 סמסטר א' תשעב/דמה2|מבחן דמה נוסף תשע"ב]], [[מדיה:tashabfaketestBsol.pdf|פתרון]] | |||
*[[מדיה: infi1Exams1.pdf | מועד מיוחד תשע"ב]], [[מדיה:tashabspecialtestsol.pdf|פתרון]] | |||
*[[מדיה: infi1Exams2.pdf | מועד א' תשע"ב]], [[88-132 אינפי 1 סמסטר א' תשעב/פתרון מועד א מתמטיקאים|פתרון]] | |||
*[[מבחן אינפי 1 סמסטר א' מועד ב' תשע"ב| מועד ב' למתמטיקאים תשע"ב כולל פתרון]] | |||
*[[88-132 סמסטר א' תשעא/ פתרון מועד א'|מבחן מועד א' החממה תשע"א פתרון]] | |||
*[[88-132 סמסטר א' תשעא/ פתרון מועד ב'|מבחן מועד ב' החממה תשע"א פתרון]] | |||
*[[פתרון אינפי 1, תשס"ב, מועד א, |פתרון תשס"ב, מועד א]] | |||
*[[פתרון אינפי 1, תשס"ג, מועד ב, |פתרון תשס"ג, מועד ב]] | |||
*[[פתרון אינפי 1, תשנ"ט, מועד ב, |פתרון תשנ"ט, מועד ב]] | |||
*[[פתרון אינפי 1, תש"נ |פתרון תש"נ, אין מועד]] | |||
*[[אינפי 1, תשנ"ו מועד ב' - פתרון (זלצמן)|פתרון תשנ"ו, מועד ב']] | |||
===מבחנים של מדמ"ח=== | |||
*[[מדיה:2489132TestA.pdf|מועד א' סמסטר ב' תשפ"ד]] | |||
*[[מדיה:21Infi1CSSummerA.pdf|מועד א' סמסטר קיץ תשפ"א]], [[מדיה:21Infi1CSSummerASol.pdf|פתרון]] | |||
*[[מדיה:21Infi1CSSummerB.pdf|מועד ב' סמסטר קיץ תשפ"א]], [[מדיה:21Infi1CSSummerBSol.pdf|פתרון חלקי]] | |||
*[[מדיה:infi1moedExmp2021CS.pdf|מבחן לדוגמא תשפ"א]], [[מדיה:infi1moedExmp2021CSSol.pdf|פתרון מבחן לדוגמא תשפ"א]] | |||
*[[מדיה:infi1moedA2021CS.pdf|מועד א' תשפ"א]], [[מדיה:infi1moedA2021CSSol.pdf|פתרון מועד א' תשפ"א]] | |||
*[[מדיה:infi1moedB2021CS.pdf|מועד ב' תשפ"א]], [[מדיה:infi1moedB2021CSSol.pdf|פתרון מועד ב' תשפ"א]] | |||
*[[מדיה:infi1moedC2021CS.pdf|מועד ג' תשפ"א]], [[מדיה:infi1moedC2021CSSol.pdf|פתרון מועד ג' תשפ"א]] | |||
*[[מדיה:19CSInfi1dumbtest.pdf|מבחן לדוגמא תש"ף]], [[מדיה:19CSInfi1dumbtestSol.pdf|פתרון מבחן לדוגמא תש"ף]] | |||
*[[מדיה:19CSInfi1A.pdf|מבחן מועד א' תש"ף]], [[מדיה:19CSInfi1ASol.pdf|פתרון מבחן מועד א' תש"ף]] | |||
*[[מדיה:16CSInfi1ASol.pdf|פתרון מבחן מועד ג' תשע"ז]] | |||
*[[88-132 אינפי 1 סמסטר א' תשעג/פתרון מועד א - גרסת שנפס|מועד א' תשע"ג פתרונות בלבד]] | |||
*[[מדיה:TashagInfiCsexmtest.pdf|מבחן דמה תשע"ג]], [[מדיה:TashagInfiCsexmtestSol.pdf|פתרון מבחן דמה תשע"ג]] | |||
*[[88-132 אינפי 1 סמסטר א' תשעב/פתרון מועד א מדמח|מבחן מדמ"ח מועד א' תשעב ופתרונו]]. | |||
===מבחנים של הנדסה=== | |||
*[[83-112 חדו"א 1 להנדסה/נושאי הקורס|מבחנים בחדו"א 1 של הנדסה]] - שאלות 2,6 אינן רלונטיות לקורס זה | |||
===מבחנים של אנליזה למורים=== | |||
*[[מבחנים בקורס אנליזה 1 למורים]] - אמנם כלל השאלות רלוונטיות, אולם הרמה הכולל של המבחנים נמוכה יותר מקורס זה | |||
=== הצעות פתרון למבחנים מהשנים תשע"ה-תשפ"ב (תיכוניסטים) === | |||
ע"י לירן מנצורי ויונתן סמידוברסקי | |||
*[[מדיה:מבחן_תשפב_מועד_א_יונתן_סמידוברסקי.pdf| מבחן תשפ"ב מועד א']] | |||
*[[מדיה:מבחן_תשפא_מועד_א.pdf| מבחן תשפ"א מועד א']] (XI) | |||
*[[מדיה:מבחן_תשפא_מועד_א.pdf| מבחן תשפ"א מועד א']] (XI) | |||
*[[מדיה:מבחן_תשעט_מועד_ב_לירן_מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ט מועד ב']] | |||
*[[מדיה:פתרון_תשעט_מועד_א_לירן_מנצורי_ויונתן_סמידוברסקי.pdf| מבחן תשע"ט מועד א']] | |||
*[[מדיה:תשעח_מועד_ב_לירן_מנצורי_ויונתן_סמידוברסקי.pdf | מבחן תשע"ח מועד ב']] | |||
*[[מדיה:תשעח_מועד_א_יונתן_סמידוברסקי.pdf|מבחן תשע"ח מועד א']] | |||
*[[מדיה:פתרון_תשעז_מועד_ב_לירן מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ז מועד ב']] | |||
*[[מדיה:מבחן_תשעז_מועד_א_לירן_מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ז מועד א']] | |||
*[[מדיה:פתרון_מבחן_תשעו_מועד_ב_לירן_מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ו מועד ב']] | |||
*[[מדיה:פתרון_מבחן_תשעו_מועד_א_לירן_מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ו מועד א']] | |||
*[[מדיה:תיקון_תשעה_מועד_ב_לירן_מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ה מועד ב']] | |||
*[[מדיה:תשעה_מועד_א'_לירן_מנצורי_ויונתן_סמידוברסקי.pdf|מבחן תשע"ה מועד א']] | |||
===מבחנים מאוניברסיטאות שונות=== | |||
*[[אינפי 1 - מבחנים מאוניברסיטאות שונות]] | |||
=סרטוני ותקציר ההרצאות= | =סרטוני ותקציר ההרצאות= | ||
[https://www.youtube.com/playlist?list=PLHinTfsAOC-sR6S1JZDECwwzGk6Z4NXWe פלייליסט של כל הסרטונים] | |||
[https://www.youtube.com/playlist?list=PLzSjdxrZD_hkSHBU2VSWetKIVS1oyDT2c פלייליסט ההרצאות של אינפי 1 למדמח תשפ"א] | [https://www.youtube.com/playlist?list=PLzSjdxrZD_hkSHBU2VSWetKIVS1oyDT2c פלייליסט ההרצאות של אינפי 1 למדמח תשפ"א] | ||
שורה 51: | שורה 135: | ||
*חוקי לוגים: | *חוקי לוגים: | ||
**<math>log_a(x)+log_a(y)=log_a(xy)</math> | **<math>log_a(x)+log_a(y)=log_a(xy)</math> | ||
**<math>log_a(x)-log_a(y)=log_a\left(\frac{x}{y}\right)</math> | |||
**<math>log_a(x^y)=y log_a(x)</math> | **<math>log_a(x^y)=y log_a(x)</math> | ||
**<math>\log_a(x)=\frac{log_b(x)}{log_b(a)}</math> | **<math>\log_a(x)=\frac{log_b(x)}{log_b(a)}</math> | ||
**<math>log_a(x)=y</math> אם ורק אם <math>x=a^y</math> | |||
===חסמים=== | ===חסמים=== | ||
שורה 107: | שורה 193: | ||
*<math>L</math> הינו גבול הסדרה <math>a_n</math> (מסומן <math>\lim a_n=L</math> או <math>a_n\to L</math>) אם: | *<math>L</math> הינו גבול הסדרה <math>a_n</math> (מסומן <math>\lim a_n=L</math> או <math>a_n\to L</math>) אם: | ||
**לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר: | **לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר: | ||
**לכל מרחק <math>\varepsilon>0</math> קיים מקום <math> | **לכל מרחק <math>\varepsilon>0</math> קיים מקום <math>K\in\mathbb{N}</math> כך שאחריו לכל <math>n>K</math> מתקיים כי <math>|a_n-L|<\varepsilon</math> | ||
שורה 113: | שורה 199: | ||
*נגדיר ש<math>a_n\to\infty</math> אם לכל <math>M>0</math> קיים <math> | *נגדיר ש<math>a_n\to\infty</math> אם לכל <math>M>0</math> קיים <math>K\in\mathbb{N}</math> כך שלכל <math>n>K</math> מתקיים כי <math>a_n>M</math> | ||
*נגדיר ש<math>a_n\to -\infty</math> אם <math>-a_n\to\infty</math> | *נגדיר ש<math>a_n\to -\infty</math> אם <math>-a_n\to\infty</math> | ||
שורה 143: | שורה 229: | ||
<videoflash>nHaq8E0vGJA</videoflash> | <videoflash>nHaq8E0vGJA</videoflash> | ||
*תהי סדרה<math>a_n</math> המתכנסת לגבול סופי והמקיימת לכל <math>n</math> כי <math>a<a_n</math> אזי <math>\lim a_n\geq a</math> | |||
===שאיפה לאפס=== | ===שאיפה לאפס=== | ||
שורה 206: | שורה 294: | ||
**אם <math>a>1</math> מתקיים כי <math>(a_n)^n \to \infty</math> | **אם <math>a>1</math> מתקיים כי <math>(a_n)^n \to \infty</math> | ||
**אם <math>a<1</math> מתקיים כי <math>(a_n)^n\to 0</math> | **אם <math>a<1</math> מתקיים כי <math>(a_n)^n\to 0</math> | ||
*שימו לב כי ייתכן ו<math>1 | *שימו לב כי ייתכן ו<math>1<a_n\to 1</math>, כלומר איברי הסדרה גדולים מ1 אך גבולה הוא 1 ואז המשפט אינו תקף. | ||
<videoflash>hFa7Nv5o05M</videoflash> | <videoflash>hFa7Nv5o05M</videoflash> | ||
===כלל המנה=== | ===כלל המנה=== | ||
שורה 280: | שורה 367: | ||
*<math>2<e<4</math>. | *<math>2<e<4</math>. | ||
<videoflash>6TohAEqQwsk</videoflash> | |||
===תתי סדרות וגבולות חלקיים=== | ===תתי סדרות וגבולות חלקיים=== | ||
====הגדרת גבול חלקי==== | |||
*לכל סדרת מקומות <math>k_n\in\mathbb{N}</math> המקיימת לכל <math>n</math> כי <math>k_n<k_{n+1}</math> נגדיר כי <math>a_{k_n}</math> הינה תת סדרה של הסדרה <math>a_n</math> | |||
*שימו לב כי מקומות תת הסדרה הם באותו הסדר כמו בסדרה המקורית, ואסור לחזור על איבר פעמיים. | |||
*לדוגמא: | |||
**נביט בסדרה <math>a_n=(-1)^n</math> | |||
**אזי <math>a_{2n}=(-1)^{2n}=1</math> היא תת הסדרה של האיברים במקומות הזוגיים <math>k_n=2n</math> | |||
*נגדיר ש<math>L</math> הוא גבול חלקי של הסדרה <math>a_n</math> אם קיימת תת סדרה <math>a_{k_n}</math> כך ש <math>a_{k_n}\to L</math> | |||
*טענה - יהי <math>L</math> סופי או אינסופי, אזי: | |||
**<math>a_n\to L</math> אם ורק אם לכל תת סדרה <math>a_{k_n}</math> מתקיים כי <math>a_{k_n}\to L</math> | |||
<videoflash>rvdm2_7g-7I</videoflash> | |||
====משפט בולצאנו-ויירשטראס==== | |||
*לכל סדרה יש תת סדרה מונוטונית. | |||
*משפט בולצאנו-ויירשטראס - לכל סדרה חסומה יש תת סדרה מתכנסת. | |||
<videoflash>R491ZyCHhBs</videoflash> | |||
====גבול עליון וגבול תחתון==== | |||
*תהי סדרה <math>a_n</math> | |||
*נגדיר את הגבול העליון שלה (limsup): | |||
**אם <math>a_n</math> אינה חסומה מלעיל אזי <math>\overline{\lim}a_n=\infty</math> | |||
**אם <math>a_n</math> חסומה מלעיל ויש לה גבול חלקי סופי כלשהו, נגדיר את <math>\overline{\lim}a_n</math> להיות החסם העליון של קבוצת הגבולות החלקיים של הסדרה | |||
**אחרת, נגדיר <math>\overline{\lim}a_n=-\infty</math> | |||
*נגדיר את הגבול התחתון שלה (liminf): | |||
**אם <math>a_n</math> אינה חסומה מלרע אזי <math>\underline{\lim}a_n=-\infty</math> | |||
**אם <math>a_n</math> חסומה מלרע ויש לה גבול חלקי סופי כלשהו, נגדיר את <math>\underline{\lim}a_n</math> להיות החסם התחתון של קבוצת הגבולות החלקיים של הסדרה | |||
**אחרת, נגדיר <math>\underline{\lim}a_n=\infty</math> | |||
*לכל גבול חלקי L של הסדרה מתקיים כי: | |||
*<math>\underline{\lim}a_n\leq L\leq \overline{\lim}a_n</math> | |||
<videoflash>n71Zy87PbEE</videoflash> | |||
*הגבול העליון והגבול התחתון הם גבולות חלקיים (כלומר יש תת סדרה ששואפת לגבול העליון, ויש תת סדרה ששואפת לגבול התחתון). | |||
<videoflash>zF_5NdFJbAg</videoflash> | |||
*לכל <math>-\infty\leq L\leq \infty</math> מתקיים כי <math>a_n \to L</math> אם ורק אם <math>\underline{\lim}a_n=\overline{\lim}a_n=L</math> | |||
<videoflash>j4C_2yvKpN0</videoflash> | |||
====תתי סדרות המכסות סדרה==== | |||
*אם ניתן לחלק סדרה למספר סופי של תתי סדרות המכסות את כולה, וכולן שואפות לאותו הגבול - אזי הסדרה כולה שואפת לגבול זה. | |||
*ייתכן שניתן לחלק סדרה לאינסוף תתי סדרות שכולם שואפות לאותו הגבול, אך הסדרה לא תשאף לגבול זה. | |||
<videoflash>Y0Jpalk44do</videoflash> | |||
===כלל הe=== | ===כלל הe=== | ||
* | *תהי <math>0\neq a_n\to 0</math> אזי <math>(1+a_n)^{\frac{1}{a_n}}\to e</math> | ||
<videoflash>y7yPjqyGOIg</videoflash> | |||
שורה 303: | שורה 460: | ||
*דוגמא: | *דוגמא: | ||
**<math>\lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3</math> | **<math>\lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3</math> | ||
<videoflash>5V4EmQIdE90</videoflash> | |||
===חשבון גבולות (אריתמטיקה של גבולות)=== | ===חשבון גבולות (אריתמטיקה של גבולות)=== | ||
שורה 316: | שורה 476: | ||
**<math>0^\infty = 0</math> | **<math>0^\infty = 0</math> | ||
**אינסוף כפול סדרה השואפת למספר חיובי = אינסוף. | **אינסוף כפול סדרה השואפת למספר חיובי = אינסוף. | ||
**יש גבול סופי + אין גבול סופי = אין גבול סופי. | **יש גבול סופי + אין גבול סופי = אין גבול סופי. | ||
**אינסוף ועוד חסומה שווה אינסוף. | **אינסוף ועוד חסומה שווה אינסוף. | ||
** | **אינסוף בחזקת מספר חיובי זה אינסוף | ||
** | **סדרה השואפת לגבול גדול מאחד, בחזקת אינסוף זה אינסוף. | ||
**סדרה השואפת לגבול בין מינוס אחד לאחד לא כולל, בחזקת אינסוף, זה אפס. | |||
====המקרים הבעייתיים==== | ====המקרים הבעייתיים==== | ||
*המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול: | *המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול: | ||
**<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math> | **<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math> | ||
===קריטריון קושי לסדרות=== | |||
*דוגמא: הסדרה <math>a_n=\sqrt{n}</math> מקיימת כי <math>a_{n+1}-a_n\to 0</math> אך היא אינה מתכנסת למספר סופי אלא שואפת לאינסוף. | |||
*הגדרה: סדרה <math>a_n</math> מקיימת את '''קריטריון קושי''' (ונקראת '''סדרת קושי''') אם: | |||
*לכל מרחק <math>\varepsilon>0</math> קיים מקום <math>K\in\mathbb{N}</math> כך שאחריו לכל זוג מקומות <math>m>n>K</math> מתקיים כי <math>|a_m-a_n|<\varepsilon</math> (המרחק בין האיברים במקומות הללו קטן מאפסילון). | |||
*משפט: בממשיים, סדרה מתכנסת לגבול סופי אם ורק אם היא סדרת קושי. | |||
*תרגיל: תהי סדרה המקיימת לכל n כי <math>|a_{n+1}-a_n|<\frac{1}{2^n}</math> אזי היא מתכנסת למספר סופי. | |||
<videoflash>S56cCgc9U38</videoflash> | |||
==פרק 3 - טורים== | ==פרק 3 - טורים== | ||
[https://youtube.com/playlist?list=PLHinTfsAOC-t4S3UxsuuifepjuWgbJ7_5 פלייליסט של כל טורים] | |||
===מבוא והגדרה=== | |||
<videoflash>E3DLm1YxOko</videoflash> | |||
*תהי סדרה <math>a_n</math>, נגדיר את '''סדרת הסכומים החלקיים''' (סס"ח בקיצור) של <math>a_n</math> ע"י | |||
**<math>S_1=a_1</math> | |||
**ולכל <math>n\in\mathbb{N}</math> מתקיים <math>S_{n+1}=S_n+a_{n+1}</math> | |||
*במילים אחרות, <math>S_n = \sum_{k=1}^n a_k</math> | |||
*הגדרת הטור <math>\sum_{k=1}^\infty a_k</math> | |||
**אומרים כי <math>\sum_{k=1}^\infty a_k =L</math> אם <math>\lim S_n = L</math> | |||
*אם לסס"ח יש גבול סופי אומרים כי הטור מתכנס, ואילו אם אין לה גבול סופי אומרים כי הטור מתבדר. | |||
*שימו לב כי בעצם: | |||
**<math>\sum_{k=1}^\infty a_k = \lim_{n\to\infty}\sum_{k=1}^n a_k</math> | |||
*אם הטור <math>\sum_{k=1}^\infty a_k</math> מתכנס, אזי <math>a_n\to 0</math> | |||
*הוכחה: | |||
**<math>S_n,S_{n+1}\to L</math> | |||
**לכן <math>a_{n+1}=S_{n+1}-S_n\to L-L=0</math> | |||
*<math>\sum_{k=1}^\infty a_k = a_1 + \sum_{k=2}^\infty a_k</math> | |||
*מסקנה: שינוי מספר סופי של איברי הטור לא משפיע על התכנסות, אבל '''כן משפיע''' על סכום הטור. | |||
<videoflash>v-qwJWYvuNY</videoflash> | |||
====חשבון טורים==== | |||
*אם הטור <math>\sum_{k=1}^\infty a_k</math> מתכנס, ו<math>c\in\mathbb{R}</math> קבוע אזי | |||
**<math>\sum_{k=1}^\infty c\cdot a_k = c\cdot \sum_{k=1}^\infty a_k</math> | |||
*אם הטורים <math>\sum_{k=1}^\infty a_k,\ \sum_{k=1}^\infty b_k</math> מתכנסים אזי | |||
**<math>\sum_{k=1}^\infty (a_k+b_k) = \sum_{k=1}^\infty a_k + \sum_{k=1}^\infty b_k</math> | |||
====הטור ההנדסי==== | |||
*הטור <math>\sum_{k=0}^\infty x^k</math> מתכנס אם ורק אם <math>|x|<1</math> וכאשר הוא מתכנס מתקיים כי: | |||
**<math>\sum_{k=0}^\infty x^k = \frac{1}{1-x}</math> וכמו כן <math>\sum_{k=1}^\infty x^k = \frac{x}{1-x}</math> | |||
<videoflash>suDMRh69Lgc</videoflash> | |||
====טור מקל סלפי (טלסקופי)==== | |||
*חישוב <math>\sum_{k=2}^\infty \frac{1}{k^2 -k}</math> על ידי הסס"ח הטלסקופי | |||
*חישוב <math>\sum_{k=1}^\infty \ln\left(\frac{k}{k+1}\right)</math> על ידי הסס"ח הטלסקופי | |||
<videoflash>uZHNxYO7S-Q</videoflash> | |||
====העשרה על סוגי סכימה==== | |||
<videoflash>54MQXVhM9vU</videoflash> | |||
===התכנסות בהחלט=== | |||
*משפט: אם טור הערכים המוחלטים <math>\sum_{k=1}^\infty |a_k|</math> מתכנס, אזי גם הטור המקורי <math>\sum_{k=1}^\infty a_k</math> מתכנס. | |||
*הגדרה: | |||
**הטור <math>\sum_{k=1}^\infty a_k</math> נקרא '''מתכנס בהחלט''' אם <math>\sum_{k=1}^\infty a_k</math> מתכנס וגם <math>\sum_{k=1}^\infty |a_k|</math> מתכנס | |||
**הטור <math>\sum_{k=1}^\infty a_k</math> נקרא '''מתכנס בתנאי''' אם <math>\sum_{k=1}^\infty a_k</math> מתכנס אך <math>\sum_{k=1}^\infty |a_k|</math> מתבדר | |||
**הטור <math>\sum_{k=1}^\infty a_k</math> נקרא '''מתבדר''' אם <math>\sum_{k=1}^\infty a_k</math> מתבדר וגם <math>\sum_{k=1}^\infty |a_k|</math> מתבדר | |||
<videoflash>OFcOpUNprTo</videoflash> | |||
*משפט: (הכללת אי שיוויון המשולש) יהי טור מתכנס בהחלט, אזי: | |||
*<math>\left|\sum_{k=0}^\infty a_k\right|\leq \sum_{k=0}^\infty |a_k|</math> | |||
*הוכחה: | |||
*לפי אי שיוויון המשולש, לכל n סופי מתקיים כי | |||
*<math>\left|\sum_{k=0}^n a_k\right|\leq \sum_{k=0}^n |a_k|</math> | |||
*ולכן גם הגבול של הסדרה השמאלית קטן או שווה לגבול של הסדרה הימנית, וזו התוצאה שרצינו. | |||
===מבחני התכנסות לטורים חיוביים=== | |||
====הקדמה והטור ההרמוני==== | |||
*הגדרה: טור <math>\sum_{k=1}^\infty a_k</math> נקרא טור חיובי אם לכל n מתקיים כי <math>a_n\geq 0</math>. | |||
*סדרת הסכומים החלקיים של טור חיובי היא מונוטונית עולה, לכן הטור מתכנס אם ורק אם היא חסומה. | |||
*לסס"ח של הטור ההרמוני <math>\sum_{k=1}^\infty \frac{1}{k}</math> יש תת סדרה ששואפת לאינסוף, ולכן הטור מתבדר: | |||
**<math>\frac{1}{n+1}+...+\frac{1}{2n}\geq \frac{1}{2n}+...+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}</math> | |||
**<math>S_1 =1\geq \frac{1}{2}</math> | |||
**<math>S_2 =1+\frac{1}{2}\geq 2\cdot \frac{1}{2}</math> | |||
**<math>S_4 =1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\geq 3\cdot \frac{1}{2}</math> | |||
**... | |||
**באופן כללי <math>S_{2^{n-1}}\geq n\cdot \frac{1}{2}\to\infty</math> | |||
<videoflash>M3B6018c-4g</videoflash> | |||
====מבחני ההשוואה==== | |||
*מבחן ההשוואה הראשון- | |||
*תהיינה סדרות כך ש <math>0\leq a_n\leq b_n</math> לכל n. אזי: | |||
** אם הטור הגדול יותר <math>\sum_{k=1}^\infty b_k</math> מתכנס בוודאי הטור הקטן יותר <math>\sum_{k=1}^\infty a_k</math> מתכנס. | |||
** נובע מכך לוגית שאם הטור הקטן מתבדר, הטור הגדול מתבדר. | |||
*דוגמא: | |||
**<math>\frac{1}{n^2} \leq \frac{1}{n^2-n}</math> | |||
**ראינו שהטור החיובי <math>\sum_{k=2}^\infty \frac{1}{k^2-k}</math> מתכנס ולכן לפי מבחן ההשוואה הראשון גם הטור החיובי <math>\sum_{k=1}^\infty\frac{1}{k^2}</math> מתכנס | |||
*מבחן ההשוואה הגבולי- | |||
*תהיינה סדרות <math>0\leq a_n,b_n</math> כך ש <math>\frac{a_n}{b_n}\to c</math> אזי: | |||
** אם <math>c=\infty</math> אזי <math>a_n>b_n</math> החל משלב מסויים, ולכן אם <math>\sum_{k=1}^\infty a_k</math> מתכנס גם <math>\sum_{k=1}^\infty b_k</math> מתכנס | |||
** אם <math>c=0</math> אזי <math>a_n<b_n</math> החל משלב מסויים, ולכן אם <math>\sum_{k=1}^\infty b_k</math> מתכנס גם <math>\sum_{k=1}^\infty a_k</math> מתכנס | |||
** אחרת, <math>0<c\in\mathbb{R}</math> והטורים '''חברים''' <math>\sum_{k=1}^\infty a_k ~ \sum_{k=1}^\infty b_k</math>, כלומר <math>\sum_{k=1}^\infty a_k</math> מתכנס אם ורק אם <math>\sum_{k=1}^\infty b_k</math> מתכנס | |||
*דוגמא: | |||
**<math>\sum_{k=1}^\infty \frac{1}{\left(\sqrt[k]{k!}\right)^2} \sim \sum_{k=1}^\infty\frac{1}{k^2}</math> | |||
<videoflash>DDOups05oms</videoflash> | |||
====מבחני השורש והמנה==== | |||
*יהי טור <math>\sum_{k=1}^\infty a_k</math> | |||
*מבחן המנה - | |||
**אם <math>\overline{\lim}\left|\frac{a_{n+1}}{a_n}\right|<1</math> אזי הטור '''מתכנס בהחלט''' | |||
**אם <math>\underline{\lim}\left|\frac{a_{n+1}}{a_n}\right|>1</math> אזי <math>a_n\not\to 0</math> ולכן הטור '''מתבדר''' | |||
*מבחן השורש - | |||
**אם <math>\overline{\lim}\sqrt[n]{|a_n|}<1</math> אזי הטור '''מתכנס בהחלט''' | |||
**אם <math>\overline{\lim}\sqrt[n]{|a_n|}>1</math> אזי <math>a_n\not\to 0</math> ולכן הטור '''מתבדר''' | |||
*שימו לב - במבחן השורש לוקחים את הגבול העליון בשני המקרים, ובמבחן המנה צריך שהעליון יהיה קטן מאחד, או התחתון גדול מאחד. זו לא טעות... | |||
<videoflash>Y7k-a29_03g</videoflash> | |||
====מבחן העיבוי==== | |||
*מבחן העיבוי- | |||
**תהי <math>0\leq a_n</math> סדרה '''מונוטונית''' יורדת אזי הטור <math>\sum_{k=1}^\infty a_k</math> מתכנס אם ורק אם <math>\sum_{k=1}^\infty 2^k \cdot a_{(2^k)}</math> מתכנס | |||
*הוכחה: | |||
** ראשית, נוכיח באינדוקציה כי <math>\sum_{k=1}^n 2^{k-1}a_{2^k} \leq \sum_{k=2}^{2^n} a_k</math> כלומר | |||
**<math> a_2 + 2\cdot a_4 +4\cdot a_8+... = a_2 + a_4 + a_4 +a_8 + a_8 + a_8 + a_8 + ... \leq a_2 + a_3 + a_4 +a_5 + a_6 +a_7 +a _8 +...</math> | |||
**כעת נוכיח באינדוקציה כי <math>\sum_{k=0}^{n-1} 2^k a_{2^k}\geq \sum_{k=1}^{2^n-1}a_k</math> | |||
*סה"כ אם הטור האחד מתכנס, הסס"ח של השני חסומה ולכן גם השני מתכנס. | |||
<videoflash>UozGPSlW8fM</videoflash> | |||
=====הטור ההרמוני המוכלל===== | |||
*הטור <math>\sum_{n=1}^\infty \frac{1}{n^a}</math> מתכנס אם ורק אם <math>a>1</math> | |||
*דוגמאות: | |||
*<math>\sum_{k=2}^\infty\frac{1}{k\cdot\ln(k)}</math> | |||
*<math>\sum_{k=2}^\infty\frac{1}{\ln(k!)}</math> | |||
*[[88-132 אינפי 1 סמסטר א' תשעב/מערך תרגול/טורים/מבחנים לחיוביים/דוגמאות|עוד דוגמאות]] | |||
===מבחני התכנסות לטורים כלליים=== | |||
====מבחן דיריכלה==== | |||
*תהי סדרה <math>a_n\to 0</math> סדרה '''מונוטונית''' יורדת לאפס | |||
*תהי סדרה <math>b_n</math> כך ש'''הסס"ח''' שלה חסומה, כלומר קיים <math>M>0</math> כך שלכל n מתקיים <math>|S_n|=\left|\sum_{k=1}^nb_k\right|<M</math> | |||
*אזי הטור <math>\sum_{k=1}^\infty a_kb_k</math> מתכנס. | |||
*דוגמאות: | |||
**<math>\sum\frac{\sin(n)}{n}</math> | |||
**<math>\sum\frac{|\sin(n)|}{n}</math> | |||
<videoflash>m5kFinYjG8A</videoflash> | |||
*הוכחה: | |||
*נסמן ב<math>D_n</math> את סדרת הסכומים החלקיים של הטור <math>\sum_{k=1}^\infty a_kb_k</math> וב<math>S_n</math> את סדרת הסכומים החלקיים של <math>b_n</math>. | |||
*יהיו <math>m>n\in\mathbb{N}</math> | |||
**<math>D_m-D_n = \sum_{k=n+1}^m a_kb_k = \sum_{k=n+1}^m a_k(S_k -S_{k-1}) = \sum_{k=n+1}^m a_kS_k - \sum_{k=n}^{m-1} a_{k+1}S_k = a_mS_m -a_{n+1}S_n + \sum_{k=n+1}^{m-1} S_k(a_k-a_{k+1})</math> | |||
**<math>|D_m-D_n|\leq |a_m||S_m| + |a_{n+1}| |S_n| +\sum_{k=n+1}^{m-1} |S_k||a_k-a_{k+1}|</math> | |||
**כעת נשתמש בעובדה כי <math>|S_n|<M</math> לכל n, <math>a_n</math> סדרה חיובית, וכן <math>a_n - a_{n+1}\geq 0</math> לכל n. | |||
**<math>|D_m-D_n|\leq M\left(a_m + a_{n+1} +\sum_{k=n+1}^{m-1} a_k-a_{k+1}\right)= 2Ma_{n+1}\to 0</math> | |||
*לכן <math>D_n</math> סדרת קושי ולכן מתכנסת לגבול סופי, כלומר הטור מתכנס. | |||
<videoflash>Ou3ixbIVfYI</videoflash> | |||
====מבחן לייבניץ==== | |||
*תהי <math>a_n\to 0</math> סדרה '''מונוטונית''' יורדת לאפס. אזי: | |||
** הטור <math>\sum_{k=1}^\infty (-1)^{k+1}a_k</math> מתכנס. | |||
**<math>\left|\sum_{k=1}^\infty (-1)^{k+1}a_k\right|\leq a_1</math>. | |||
*הוכחה: | |||
**כיוןן שהסס"ח של <math>(-1)^{n+1}</math> חסומה הטור מתכנס לפי מבחן דיריכלה. | |||
**נסמן ב<math>S_n</math> את הסס"ח של הטור <math>\sum_{k=1}^\infty (-1)^{k+1}a_k</math>. | |||
**כיוון שהסדרה <math>a_n</math> יורדת, ניתן להוכיח באינדוקציה כי: | |||
***<math>S_{2n}\geq 0</math> | |||
***<math>S_{2n-1}\leq a_1</math> | |||
<videoflash>nJU3b5zvURQ</videoflash> | |||
===סיכום בדיקת התכנסות 🖖=== | |||
*כיצד נבחן אם הטור <math>\sum a_n</math> מתכנס בהחלט, בתנאי או מתבדר? | |||
#אם ניתן להראות כי <math>a_n\not\to 0</math> הטור מתבדר | |||
# נבצע מבחני ספוק 🖖 | |||
##אם לפי מבחני ההשוואה (הראשון או הגבולי) הטור <math>\sum |a_n|</math> אינו מתכנס, אז אין התכנסות בהחלט, נעבר לבדוק התכנסות בתנאי. | |||
##אם במבחן המנה או השורש הגבול גדול מ1 הטור מתבדר, אם קטן מ1 הטור מתכנס בהחלט ואם שווה ל1 צריך לנסות משהו אחר. | |||
##אם במבחן העיבוי הטור <math>\sum |a_n|</math> אינו מתכנס, אז אין התכנסות בהחלט, נעבר לבדוק התכנסות בתנאי. | |||
#אם לא מצאנו התכנסות בהחלט, נבצע מבחנים על טורים כלליים בשביל לבדוק התכנסות בתנאי | |||
##מבחן לייבניץ | |||
##מבחן דיריכלה | |||
##עבודה ישירה על סדרת הסכומים החלקיים (טור טלסקופי למשל) | |||
===סכום האיברים החיוביים, וסכום האיברים השליליים=== | |||
*תהי סדרה <math>a_n</math> ונגדיר את: | |||
**<math>a_n^+=\begin{cases}a_n & a_n\geq 0\\ 0 & a_n<0\end{cases}</math> | |||
**<math>a_n^-=\begin{cases}0 & a_n\geq 0\\ -a_n & a_n<0\end{cases}</math> | |||
*<math>a_n=a_n^+-a_n^-</math> | |||
*<math>|a_n|=a_n^++a_n^-</math> | |||
*הטור <math>\sum a_k</math> מתכנס בהחלט אם ורק אם הטורים <math>\sum a_k^+, \sum a_k^-</math> מתכנסים שניהם. | |||
*אם הטור <math>\sum a_k</math> מתכנס בתנאי אזי הטורים <math>\sum a_k^+, \sum a_k^-</math> מתבדרים שניהם ושואפים לאינסוף. | |||
*כפי שהוכחנו בעבר בדרך שונה, אם הטור מתכנס בהחלט נובע ש<math>\sum a_k^+, \sum a_k^-</math> מתכנסים שניהם, וביחד עם העובדה ש<math>a_n=a_n^+-a_n^-</math> נובע שהטור מתכנס. | |||
<videoflash>XEl8ZykrNcw</videoflash> | |||
===שינוי סדר הסכימה=== | |||
*תהי <math>f:\mathbb{N}\to\mathbb{N}</math> פונקציה הפיכה ותהי סדרה <math>a_n</math> אז נאמר ש<math>p_n=a_{f(n)}</math> היא שינוי סדר של הסדרה <math>a_n</math>. | |||
*תרגיל - אם <math>a_n\to L</math> גם שינוי הסדר מקיים <math>p_n\to L</math> | |||
*דוגמא: | |||
**<math>a_n=1,-1,1,-1,...</math> | |||
**<math>f(n)=1,3,2,5,7,4,9,11,6,...</math> | |||
**<math>p_n=a_{f(n)}=1,1,-1,1,1,-1,...</math> | |||
*בדוגמא האחרונה: | |||
*נסמן ב<math>S_n</math> את הסס"ח של <math>a_n</math> ומתקיים כי: | |||
**<math>S_n=1,0,1,0,...</math> | |||
*נסמן ב<math>D_n</math> את הסס"ח של שינוי הסדר <math>p_n</math>, מתקיים כי: | |||
**<math>D_n =1,2,1,2,3,2,3,4,3,...</math> | |||
*שינוי הסדר אמנם הותיר את הטור מתבדר, אך הפך את סדרת הסכומים החלקיים מחסומה לשואפת לאינסוף. | |||
<videoflash>ASXMi-rBCv0</videoflash> | |||
====משפט רימן==== | |||
*משפט רימן - יהי טור מתכנס בתנאי <math>\sum_{k=1}^\infty a_k</math> אזי לכל <math>-\infty\leq S \leq \infty</math> קיים שינוי סדר כך ש <math>\sum_{k=1}^\infty p_k=S</math> | |||
*כלומר, אם הטור מתכנס בתנאי, ניתן לגרום לו להתכנס לכל ערך שנרצה (ואף לשאוף לפלוס או מינוס אינסוף), על ידי שינוי סדר איברי הסדרה. | |||
<videoflash>e_tBsPs5vq4</videoflash> | |||
====שינוי סדר הסכימה של טור מתכנס בהחלט==== | |||
*יהי טור מתכנס בהחלט <math>\sum_{k=1}^\infty a_k =S</math> אזי לכל שינוי סדר <math>p_n</math> מתקיים כי <math>\sum_{k=1}^\infty p_k=S</math> | |||
*כלומר, שינוי סדר איברי הסדרה אינו משפיע על סכום הטור. | |||
<videoflash>GG76LdzRvKo</videoflash> | |||
==פרק 4 - פונקציות ורציפות== | ==פרק 4 - פונקציות ורציפות== | ||
===מבוא לגבולות=== | ===מבוא לגבולות=== | ||
*מבוא לגבולות (שיטות אלגבריות: כפל בצמוד, הוצאת חזקה משמעותית). | |||
<videoflash>OMJWXoSIlX0</videoflash> | |||
*מבוא לגבולות (שיטות אלגבריות: כפל בצמוד, הוצאת חזקה משמעותית, חילוק פולינומים). | |||
**<math>\lim_{x\to 2}\frac{x^2-4}{x-2}</math> | **<math>\lim_{x\to 2}\frac{x^2-4}{x-2}</math> | ||
**<math>\lim_{x\to\infty}\frac{2x^2+5x+3}{3x^2-100}</math> | **<math>\lim_{x\to\infty}\frac{2x^2+5x+3}{3x^2-100}</math> | ||
שורה 339: | שורה 822: | ||
===הגדרת הגבול לפי קושי=== | ===הגדרת הגבול לפי קושי=== | ||
* <math>\lim_{x\to x_0}f(x)=L</math> אם לכל סביבה של L בציר y קיימת סביבה של <math>x_0</math> בציר x, כך שלכל ערכי x בסביבה של <math>x_0</math> פרט אולי ל<math>x_0</math> עצמו, ערכי ציר y כלומר <math>f(x)</math> נמצאים בסביבה של L בציר y. | |||
*דוגמאות: | |||
**<math>\lim_{x\to 3} 2x+1=7</math> אם לכל <math>\varepsilon>0</math> קיים <math>\delta>0</math> כך שלכל x המקיים <math>0\neq |x-3|<\delta</math> מתקיים <math>|2x+1-7|<\varepsilon </math> | |||
**<math>\lim_{x\to 2^-}\frac{1-x}{\sqrt{2-x}}=-\infty</math> אם לכל <math>M>0</math> קיים <math>\delta>0</math> כך שלכל x המקיים <math>2-\delta<x<2</math> מתקיים כי <math>\frac{1-x}{\sqrt{2-x}}<-M</math> | |||
**<math>y=a</math> אסימפטוטה אופקית מימין של <math>f(x)</math> אם לכל <math>\varepsilon>0</math> קיים <math>K>0</math> כך שלכל x המקיים <math>x>K</math> מתקיים כי <math>|f(x)-a|<\varepsilon</math> | |||
<videoflash>YTA4sI56t1Y</videoflash> | |||
===הגדרת הגבול לפי היינה=== | ===הגדרת הגבול לפי היינה=== | ||
*<math>\lim_{x\to x_0}f(x)=L</math> אם לכל סדרת מספרים על ציר איקס <math>x_0\neq a_n\to x_0</math> סדרת המספרים על ציר y מקיימת <math>f(a_n)\to L</math> | |||
*<math>\lim_{x\to x_0^+}f(x)=L</math> אם לכל סדרת מספרים על ציר איקס <math>x_0< a_n\to x_0</math> סדרת המספרים על ציר y מקיימת <math>f(a_n)\to L</math> | |||
*<math>\lim_{x\to x_0^-}f(x)=L</math> אם לכל סדרת מספרים על ציר איקס <math>x_0> a_n\to x_0</math> סדרת המספרים על ציר y מקיימת <math>f(a_n)\to L</math> | |||
הגדרה זו שקולה להגדרה של קושי, כלומר הגבול שווה לL לפי קושי אם ורק אם הוא שווה לL לפי היינה. | |||
*מרבית כללי האריתמטיקה המורחבות נובעים "בחינם" עבור פונקציות | *מרבית כללי האריתמטיקה המורחבות נובעים "בחינם" עבור פונקציות | ||
*אם | *<math>\lim_{x\to x_0}f(x)=L</math> אם ורק אם <math>\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=L</math> | ||
<videoflash>KKFyEBxM9yo</videoflash> | |||
===הפונקציות הטריגונומטריות=== | ===הפונקציות הטריגונומטריות=== | ||
שורה 356: | שורה 858: | ||
<videoflash>gnUkKM9PgPQ</videoflash> | |||
שורה 373: | שורה 876: | ||
*ראינו ש<math>\lim_{x\to 0}\frac{sin(x)}{x}=1</math>. | *ראינו ש<math>\lim_{x\to 0}\frac{sin(x)}{x}=1</math>. | ||
*שימו לב ש<math>\lim_{x\to\infty}\frac{sin(x)}{x}=0</math>, כיוון שמדובר בחסומה חלקי שואפת לאינסוף. | *שימו לב ש<math>\lim_{x\to\infty}\frac{sin(x)}{x}=0</math>, כיוון שמדובר בחסומה חלקי שואפת לאינסוף. | ||
<videoflash>YIU0hc8xe7I</videoflash> | |||
===רציפות=== | ===רציפות=== | ||
*רציפות. | *רציפות. | ||
שורה 385: | שורה 888: | ||
*טענה: אם f רציפה ב<math>x_0</math> אזי לכל סדרה <math>x_n\to x_0</math> (גם אם אינה שונה מ<math>x_0</math>) מתקיים כי <math>f(x_n)\to f(x_0)</math>. | *טענה: אם f רציפה ב<math>x_0</math> אזי לכל סדרה <math>x_n\to x_0</math> (גם אם אינה שונה מ<math>x_0</math>) מתקיים כי <math>f(x_n)\to f(x_0)</math>. | ||
<videoflash>9y7T2Nmpv24</videoflash> | |||
<videoflash>76vmO8IBYKQ</videoflash> | |||
*גבול של הרכבת פונקציות נכשל ללא רציפות. | |||
**<math>f(x)=\frac{x}{x}, g(x)=0</math> מתקיים כי <math>\lim_{x\to 0}f(x)=1,\lim_{x\to 2}g(x)=0</math> אבל <math>\lim_{x\to 2}f(g(x))\neq 1</math>. | |||
*הרכבת רציפות: תהי f רציפה ב<math>x_0</math> ותהי g רציפה ב<math>f(x_0)</math>. אזי <math>g\circ f</math> רציפה ב<math>x_0</math>. | *הרכבת רציפות: תהי f רציפה ב<math>x_0</math> ותהי g רציפה ב<math>f(x_0)</math>. אזי <math>g\circ f</math> רציפה ב<math>x_0</math>. | ||
**הוכחה: | **הוכחה: | ||
**תהי סדרה <math>x_0\neq x_n\to x_0</math> אזי <math>f(x_n)\to f(x_0)</math> | **תהי סדרה <math>x_0\neq x_n\to x_0</math> אזי <math>f(x_n)\to f(x_0)</math> | ||
**לפי הטענה הקודמת, <math>g(f(x_n))\to g(f(x_0))</math>. | **לפי הטענה הקודמת, <math>g(f(x_n))\to g(f(x_0))</math>. | ||
<videoflash>FA_XRcitd64</videoflash> | |||
*פונקציות הפיכות (הוכחות והגדרות מדוייקות בבדידה). | |||
**פונקציה <math>f:[a,b]\to [c,d]</math> הפיכה אם"ם היא חח"ע ועל | |||
**הפונקציה ההופכית היא <math>f^{-1}:[c,d]\to[a,b]</math> ומתקיים כי <math>f(x)=y</math> אם"ם <math>x=f^{-1}(y)</math> | |||
*טענה: אם <math>f:[a,b]\to [c,d]</math> רציפה בקטע <math>[a,b]</math>, אזי <math>f^{-1}:[c,d]\to[a,b]</math> רציפה בקטע <math>[c,d]</math>. | |||
**הוכחה: | |||
**תהי <math>y_0\neq y_n\to y_0</math>, צ"ל ש <math>f^{-1}(y_n)\to f^{-1}(y_0)</math> | |||
**יהי גבול חלקי <math>x_n=f^{-1}(y_n)\to L</math>. | |||
**אזי <math>f(x_n)=y_n\to y_0</math>. | |||
**מצד שני, לפי רציפות הפונקציה f מתקיים <math>f(x_n)\to f(L)</math>. | |||
**לכן <math>f(L)=y_0</math> ולכן <math>L=f^{-1}(y_0)</math>. | |||
<videoflash>qjSueXDanYs</videoflash> | |||
===אי רציפות=== | |||
שורה 396: | שורה 936: | ||
**קפיצתית (מין ראשון) - הגבולות החד צדדיים קיימים סופיים ושונים בנקודה. | **קפיצתית (מין ראשון) - הגבולות החד צדדיים קיימים סופיים ושונים בנקודה. | ||
**עיקרית (מין שני) - אחד הגבולות החד צדדיים אינו קיים או שאינו סופי. | **עיקרית (מין שני) - אחד הגבולות החד צדדיים אינו קיים או שאינו סופי. | ||
<videoflash>3zwjxNNr5tc</videoflash> | |||
==פרק 5 - גזירות== | ==פרק 5 - גזירות== | ||
שורה 404: | שורה 947: | ||
===הגדרת הנגזרת=== | ===הגדרת הנגזרת=== | ||
*<math>f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math> | *<math>f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math> | ||
*<math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}</math> | *<math>\displaystyle{\lim{h\to 0}} \frac{f(x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}</math> | ||
**הסבר לגבי שיטת ההצבה בה השתמשנו לעיל: | **הסבר לגבי שיטת ההצבה בה השתמשנו לעיל: | ||
**נניח כי <math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0)</math> ונוכיח כי <math>\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>, והוכחה דומה בכיוון ההפוך. | **נניח כי <math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0)</math> ונוכיח כי <math>\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>, והוכחה דומה בכיוון ההפוך. | ||
שורה 416: | שורה 959: | ||
**<math>(|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h}</math> וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים. | **<math>(|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h}</math> וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים. | ||
**ניתן לשים לב גם ש<math>|x|=\sqrt{x^2}</math>, וכמו כן נראה בהמשך כי<math>\sqrt{x}</math> אינה גזירה באפס. | **ניתן לשים לב גם ש<math>|x|=\sqrt{x^2}</math>, וכמו כן נראה בהמשך כי<math>\sqrt{x}</math> אינה גזירה באפס. | ||
<videoflash>nukvxlHm2kQ</videoflash> | |||
===הנגזרות של הפונקציות האלמנטריות=== | ===הנגזרות של הפונקציות האלמנטריות=== | ||
שורה 423: | שורה 969: | ||
**באופן דומה <math>(cos(x))'=-sin(x)</math> | **באופן דומה <math>(cos(x))'=-sin(x)</math> | ||
*לוג: | *לוג: | ||
**<math>\lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e)</math> | **<math>\lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e) | ||
</math> | |||
***המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה. | ***המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה. | ||
***(בפרט נובע כי <math>\lim_{x\to 0}\frac{ln(1+x)}{x}=1</math>.) | ***(בפרט נובע כי <math>\lim_{x\to 0}\frac{ln(1+x)}{x}=1</math>.) | ||
שורה 432: | שורה 979: | ||
**<math>(a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a)</math> | **<math>(a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a)</math> | ||
***בפרט נובע כי <math>(e^x)'=e^x</math>. | ***בפרט נובע כי <math>(e^x)'=e^x</math>. | ||
תהי | <videoflash>pBYSLhpsz9g</videoflash> | ||
*<math>( | |||
<videoflash>NkPt_CFvuhY</videoflash> | |||
*ישר: | |||
**<math>(x)'=\displaystyle{\lim_{h\to 0}\frac{(x+h)-x}{h} = 1}</math> | |||
===חוקי הגזירה=== | |||
*תהיינה f,g גזירות ב<math>x_0</math> אזי: | |||
**<math>(cf)'(x_0)=cf'(x_0)</math> | |||
**<math>(f+g)'(x_0)=f'(x_0)+g'(x_0)</math> | |||
**<math>(f\cdot g)'(x_0) = f'(x_0)\cdot g(x_0)+f(x_0)\cdot g'(x_0)</math> | |||
<videoflash>iiF0siIWius</videoflash> | |||
תהי g גזירה ב<math>x_0</math> ותהי f הגזירה ב<math>g(x_0)</math>: | |||
*<math>(f\circ g)'(x_0) = \lim_{x\to x_0} \frac{f(g(x))-f(g(x_0))}{x-x_0}</math> | |||
*תהי סדרה <math>x_0\neq x_n\to x_0</math>. | *תהי סדרה <math>x_0\neq x_n\to x_0</math>. | ||
*רוצים לומר ש<math>\frac{g | *רוצים לומר ש<math>\frac{f(g(x_n))-f(g(x_0))}{x_n-x_0}= \frac{f(g(x_n))-f(g(x_0))}{g(x_n)-g(x_0)}\cdot \frac{g(x_n)-g(x_0)}{x_n-x_0}\to f'(g(x_0))\cdot g'(x_0)</math>. | ||
*אמנם <math> | *אמנם <math>g(x_n)\to g(x_0)</math> בגלל שהרציפות נובעת מהגזירות, אבל לא ידוע ש<math>g(x_n)\neq g(x_0)</math> ובמקרה זה אנחנו כופלים ומחלקים באפס. | ||
*אם יש תת סדרה <math>a_n</math> של <math>x_n</math> עבורה <math> | *אם יש תת סדרה <math>a_n</math> של <math>x_n</math> עבורה <math>g(a_n)=g(x_0)</math> אזי <math>\frac{g(a_n)-g(x_0)}{a_n-x_0}=0</math> ולכן <math>g'(x_0)=0</math>. | ||
*לכן <math> | *לכן <math>f'(g(x_0))\cdot g'(x_0)=0</math>. | ||
*כמו כן, <math>\frac{g | *כמו כן, <math>\frac{f(g(a_n))-f(g(x_0))}{a_n-x_0}=0</math>. | ||
*לכן בכל מקרה קיבלנו כי <math>\frac{g | *לכן בכל מקרה קיבלנו כי <math>\frac{f(g(x_n))-f(g(x_0))}{x_n-x_0}\to f'(g(x_0))\cdot g'(x_0)</math> | ||
*סה"כ <math>( | *סה"כ <math>(f\circ g)'(x_0)=f'(g(x_0))\cdot g'(x_0)</math>. | ||
<videoflash>uMPXs9PwxZ4</videoflash> | |||
===נגזרת של חזקה=== | ===נגזרת של חזקה=== | ||
*עבור <math>x>0</math> מתקיים <math>(x^\alpha)'=(e^{ln\left(x^\alpha\right)})' = (e^{\alpha\cdot ln(x)})' = e^{\alpha\cdot ln(x)}\cdot \frac{\alpha}{x} = x^\alpha \cdot \frac{\alpha}{x} = \alpha x^{\alpha-1}</math> | *עבור <math>x>0</math> מתקיים <math>(x^\alpha)'=(e^{ln\left(x^\alpha\right)})' = (e^{\alpha\cdot ln(x)})' = e^{\alpha\cdot ln(x)}\cdot \frac{\alpha}{x} = x^\alpha \cdot \frac{\alpha}{x} = \alpha x^{\alpha-1}</math> | ||
*עבור חזקות בהן הביטוי מוגדר, <math>(x^\alpha)'=\alpha x^{\alpha-1}</math> גם עבור <math>x\leq 0</math> (לפי תכונות של פונקציות זוגיות ואי זוגיות, ובאפס לפי חישוב ישיר). | |||
*חזקה: | |||
**<math>(x^\alpha)'=\alpha x^{\alpha-1}</math> לכל <math>\alpha\in \mathbb{R}</math>, הוכחה בהמשך. | |||
*בפרט: | |||
**<math>(1)'=0</math> | |||
**<math>(\frac{1}{x})' = (x^{-1})'=-\frac{1}{x^2}</math> | |||
**<math>(\sqrt{x})'=(x^{\frac{1}{2}})'=\frac{1}{2\sqrt{x}}</math> | |||
** עבור <math>x>0</math> מתקיים <math>(\sqrt[3]{x})'=(x^{\frac{1}{3}})'=\frac{1}{3\sqrt[3]{x^2}}</math> וכיוון שהפונקציה אי זוגית נובע שהנגזרת שווה לביטוי הזה גם לשאר ערכי x. | |||
<videoflash>UQnqIRrf12E</videoflash> | |||
*דוגמא: חישוב הנגזרת של <math>x^x</math> | *דוגמא: חישוב הנגזרת של <math>x^x</math> | ||
שורה 462: | שורה 1,042: | ||
<videoflash>Iag0TdjdFnM</videoflash> | |||
===פונקציות הופכיות ונגזרתן=== | |||
שורה 495: | שורה 1,063: | ||
*<math>tan^2(x)+1 = \frac{sin^2(x)}{cos^2(x)}+1 = \frac{1}{cos^2(x)}</math> | *<math>tan^2(x)+1 = \frac{sin^2(x)}{cos^2(x)}+1 = \frac{1}{cos^2(x)}</math> | ||
*<math>arctan'(x) = \frac{1}{\frac{1}{cos^2(arctan(x))}} = \frac{1}{tan^2(arctan(x))+1}=\frac{1}{1+x^2}</math> | *<math>arctan'(x) = \frac{1}{\frac{1}{cos^2(arctan(x))}} = \frac{1}{tan^2(arctan(x))+1}=\frac{1}{1+x^2}</math> | ||
*הנגזרות של <math>arcsin,arccos</math> | |||
<videoflash>n9WMYrhb-6I</videoflash> | |||
<videoflash>sryeJtePu_U</videoflash> | |||
==פרק 6 - חקירה== | ==פרק 6 - חקירה== | ||
===משפט ערך הביניים=== | |||
*תהי f רציפה בקטע <math>[a,b]</math> כאשר <math>a<b\in\mathbb{R}</math>. | |||
*עוד נניח כי <math>f(a)\leq 0</math> וכן <math>f(b)\geq 0</math>. | |||
*אזי קיימת נקודה <math>c\in[a,b]</math> כך ש <math>f(c)=0</math> | |||
*תהי f רציפה ב<math>[0,1]</math> כך ש<math>f(1)=2</math>, הוכיחו שקיימת נק' <math>c\in [0,1]</math> עבורה <math>f(c)=\frac{1}{c}</math> | *תהי f רציפה ב<math>[0,1]</math> כך ש<math>f(1)=2</math>, הוכיחו שקיימת נק' <math>c\in [0,1]</math> עבורה <math>f(c)=\frac{1}{c}</math> | ||
**נעביר אגף ונביט בפונקציה <math>h(x)=f(x)-\frac{1}{x}</math> שצריך למצוא שורש שלה. | **נעביר אגף ונביט בפונקציה <math>h(x)=f(x)-\frac{1}{x}</math> שצריך למצוא שורש שלה. | ||
שורה 508: | שורה 1,090: | ||
<videoflash>WdKVN6R0NfU</videoflash> | |||
<videoflash>pZXEn6KWtMY</videoflash> | |||
===משפטי ויירשטראס=== | |||
*פונקציה רציפה בקטע סופי סגור - חסומה. | |||
*פונקציה רציפה בקטע סופי סגור - מקבלת מינימום ומקסימום. | |||
<videoflash>FPlpOmNQiAE</videoflash> | |||
===משפט פרמה=== | |||
*אם פונקציה גזירה בנק' קיצון מקומי, הנגזרת שווה שם לאפס. | |||
*ההפך אינו נכון, ייתכן שהנגזרת תתאפס אך בנקודה לא יהיה קיצון ואף לא פיתול. | |||
<videoflash>Vlsum5uohMo</videoflash> | |||
===משפט רול=== | |||
**תהי f רציפה ב<math>[a,b]</math> וגזירה ב<math>(a,b)</math> כך ש <math>f(a)=f(b)</math> אזי קיימת נקודה <math>c\in(a,b)</math> כך ש <math>f'(c)=0</math> | |||
*כלומר, פונקציה רציפה בקטע סגור, וגזירה בקטע הפתוח, שמקבלת את אותו ערך בקצוות - הנגזרת שלה מתאפסת בנקודה כלשהי בקטע הפתוח. | |||
*לפולינום מדרגה n יש לכל היותר n שורשים שונים. | |||
<videoflash>hmdp_jj9fx0</videoflash> | |||
===משפט לגראנז' ותחומי עלייה וירידה=== | |||
*פונקציה f נקראת עולה בתחום A אם לכל <math>x_1<x_2\in A</math> מתקיים כי <math>f(x_1)\leq f(x_2)</math> | |||
*פונקציה f נקראת יורדת בתחום A אם לכל <math>x_1<x_2\in A</math> מתקיים כי <math>f(x_1)\geq f(x_2)</math> | |||
*תהי f רציפה ב<math>[a,b]</math> וגזירה ב<math>(a,b)</math> אזי קיימת נקודה <math>c\in(a,b)</math> כך ש <math>f'(c)=\frac{f(b)-f(a)}{b-a}</math> | |||
*כלומר קיימת נקודה בה השיפוע שווה לשיפוע המיתר בין שתי הנקודות בקצוות הקטע. | |||
*תהי f רציפה ב<math>[a,b]</math> וגזירה ב<math>(a,b)</math> אזי f עולה בקטע <math>[a,b]</math> אם ורק אם <math>f'(x)\geq 0</math> לכל <math>x\in[a,b]</math> | |||
*כמו כן, באותם תנאים, אם <math>f'(x)\geq 0</math> לכל <math>x\in[a,b]</math> אזי <math>f(a)<f(b)</math> או שהפונקציה קבועה ב<math>[a,b]</math> ונגזרתה שווה אפס בקטע <math>(a,b)</math> | |||
<videoflash>3DXDneBUnK8</videoflash> | |||
*דוגמא | |||
*יהי <math>a\in\mathbb{R}</math> מצאו כמה פתרונות יש למשוואה <math>sin(x)=x+a</math> | |||
<videoflash>zX9XkY_mdDQ</videoflash> | |||
===משפט קושי (לגראנז' המוכלל)=== | |||
* | *תהיינה f,g רציפות ב<math>[a,b]</math> וגזירות ב<math>(a,b)</math> כך ש<math>g'\neq 0</math> בקטע <math>(a,b)</math>. | ||
*אזי קיימת נקודה <math>c\in(a,b)</math> כך ש <math>\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}</math> | |||
* | |||
שורה 532: | שורה 1,158: | ||
**עבור <math>g(x)=x</math> נקבל את משפט לאגראנז' הרגיל. | **עבור <math>g(x)=x</math> נקבל את משפט לאגראנז' הרגיל. | ||
=== | |||
* | <videoflash>PTtcansFGJQ</videoflash> | ||
* | |||
===[[כלל לופיטל]]=== | |||
*תהיינה פונקציות כך ש <math>f,g\to 0</math> או <math>f,g\to \infty</math> ונניח כי <math>\frac{f'}{g'}\to L</math> אזי גם <math>\frac{f}{g}\to L</math> | |||
<videoflash>PaDFSrtsOE4</videoflash> | |||
====משפט סדרי הגודל==== | |||
*לכל <math>0<a,b</math> מתקיים כי: | |||
*<math>\displaystyle{\lim_{x\to\infty} \frac{x^a}{(e^x)^b} =0} </math> | |||
*<math>\displaystyle{\lim_{x\to\infty} \frac{x^a}{\ln^b(x)} =\infty} </math> | |||
====דוגמאות נוספות==== | |||
*<math>\displaystyle{\lim_{x\to 1} \frac{\ln(x)}{\sin(\pi x)} =-\frac{1}{\pi}} </math> | |||
*<math>\displaystyle{\lim_{x\to\infty} \frac{x}{sin(x)+2+x} =1} </math> | |||
*<math>\displaystyle{\lim_{x\to 0^+} xe^{\frac{1}{x}} =\infty} </math> | |||
*<math>\displaystyle{\lim_{x\to\infty} \sqrt[x]{x} =1} </math> | |||
*<math>\displaystyle{\lim_{x\to 0^+} x\ln(x) =0} </math> | |||
*<math>\displaystyle{\lim_{x\to 0^+} x^x =1} </math> | |||
*<math>\displaystyle{\lim_{x\to 0^+} \frac{1}{x}+\ln(x) =\infty} </math> | |||
*<math>\displaystyle{\lim_{x\to\frac{\pi}{2}} \left(\sin(x)\right)^{\tan^2(x)} =\frac{1}{\sqrt{e}}} </math> | |||
*<math>\displaystyle{\lim_{x\to(-\infty)} \frac{x}{\sqrt{x^2+1}} =-1} </math> | |||
====הוכחת כלל לופיטל בשני המקרים==== | |||
<videoflash>bqLDkGRLUYI</videoflash> | |||
<videoflash>0RjBoccpjo8</videoflash> | |||
אהבתם חדו"א 1? אז תעופו על [[חדוא 2 - ארז שיינר|חדו"א 2]]! | |||
גרסה אחרונה מ־18:55, 14 בספטמבר 2024
אהבתם חדו"א 1? אז תעופו על חדו"א 2!
תרגילי הכנה למבחן ופתרונותיהם
מבחנים ופתרונות
מערכי תרגול עם פתרונות
מבחנים של מתמטיקה
- מבחן מועד א' החממה תשפ"א, פתרון
- מבחן מועד ב' החממה תשפ"א, פתרון
- פתרון מבחן לדוגמא החממה תשפ"א
- מבחן מועד א תשע"ט, פתרון
- מבחן דמה תשע"ז, פתרון
- מבחן מועד א' תשע"ז, פתרון
- מבחן מועד ב' תשע"ז, פתרון
- מבחן מועד א' תשע"ו, פתרון המרצה, פתרון המתרגלים, פתרון ארז שיינר
- מבחן מועד א' תשע"ג, פתרון
- מבחן מועד ב' תשע"ג, פתרון חלקי
- מבחן דמה למתמטיקאים תשע"ב, פתרון
- מבחן דמה נוסף תשע"ב, פתרון
- מועד מיוחד תשע"ב, פתרון
- מועד א' תשע"ב, פתרון
- מועד ב' למתמטיקאים תשע"ב כולל פתרון
- מבחן מועד א' החממה תשע"א פתרון
- מבחן מועד ב' החממה תשע"א פתרון
- פתרון תשס"ב, מועד א
- פתרון תשס"ג, מועד ב
- פתרון תשנ"ט, מועד ב
- פתרון תש"נ, אין מועד
- פתרון תשנ"ו, מועד ב'
מבחנים של מדמ"ח
- מועד א' סמסטר ב' תשפ"ד
- מועד א' סמסטר קיץ תשפ"א, פתרון
- מועד ב' סמסטר קיץ תשפ"א, פתרון חלקי
- מבחן לדוגמא תשפ"א, פתרון מבחן לדוגמא תשפ"א
- מועד א' תשפ"א, פתרון מועד א' תשפ"א
- מועד ב' תשפ"א, פתרון מועד ב' תשפ"א
- מועד ג' תשפ"א, פתרון מועד ג' תשפ"א
- מבחן לדוגמא תש"ף, פתרון מבחן לדוגמא תש"ף
- מבחן מועד א' תש"ף, פתרון מבחן מועד א' תש"ף
- פתרון מבחן מועד ג' תשע"ז
- מועד א' תשע"ג פתרונות בלבד
- מבחן דמה תשע"ג, פתרון מבחן דמה תשע"ג
- מבחן מדמ"ח מועד א' תשעב ופתרונו.
מבחנים של הנדסה
- מבחנים בחדו"א 1 של הנדסה - שאלות 2,6 אינן רלונטיות לקורס זה
מבחנים של אנליזה למורים
- מבחנים בקורס אנליזה 1 למורים - אמנם כלל השאלות רלוונטיות, אולם הרמה הכולל של המבחנים נמוכה יותר מקורס זה
הצעות פתרון למבחנים מהשנים תשע"ה-תשפ"ב (תיכוניסטים)
ע"י לירן מנצורי ויונתן סמידוברסקי
- מבחן תשפ"ב מועד א'
- מבחן תשפ"א מועד א' (XI)
- מבחן תשפ"א מועד א' (XI)
- מבחן תשע"ט מועד ב'
- מבחן תשע"ט מועד א'
- מבחן תשע"ח מועד ב'
- מבחן תשע"ח מועד א'
- מבחן תשע"ז מועד ב'
- מבחן תשע"ז מועד א'
- מבחן תשע"ו מועד ב'
- מבחן תשע"ו מועד א'
- מבחן תשע"ה מועד ב'
- מבחן תשע"ה מועד א'
מבחנים מאוניברסיטאות שונות
סרטוני ותקציר ההרצאות
פלייליסט ההרצאות של אינפי 1 למדמח תשפ"א
פרק 1 - מספרים וחסמים
קבוצות מספרים
- הטבעיים [math]\displaystyle{ \mathbb{N}=\{1,2,3,...\} }[/math]
- השלמים [math]\displaystyle{ \mathbb{Z}=\{0,-1,1,-2,2,...\} }[/math]
- הרציונאליים [math]\displaystyle{ \mathbb{Q}=\left\{\frac{p}{n}|p\in\mathbb{Z},n\in\mathbb{N}\right\} }[/math]
- הממשיים [math]\displaystyle{ \mathbb{R} }[/math], כל השברים העשרוניים כולל האינסופיים
- העשרה: בנייה של שדה הממשיים באמצעות חתכי דדקינד
- לא קיים [math]\displaystyle{ x\in\mathbb{Q} }[/math] כך ש [math]\displaystyle{ x^2=2 }[/math].
- במילים פשוטות, [math]\displaystyle{ \sqrt{2} }[/math] אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).
חזקות ולוגריתמים
- לכל מספר ממשי [math]\displaystyle{ x\in\mathbb{R} }[/math] ולכל מספר טבעי [math]\displaystyle{ n\in\mathbb{N} }[/math] נגדיר [math]\displaystyle{ x^n=x\cdots x }[/math] כפל n פעמים
- לכל מספר ממשי אי שלילי [math]\displaystyle{ 0\leq x\in\mathbb{R} }[/math] ולכל מספר טבעי [math]\displaystyle{ n\in\mathbb{N} }[/math] נגדיר [math]\displaystyle{ x^{\frac{1}{n}}=\sqrt[n]{x} }[/math] כלומר המספר האי שלילי שבחזקת n שווה לx.
- לכל מספר ממשי אי שלילי [math]\displaystyle{ 0\leq x\in\mathbb{R} }[/math] ולכל זוג מספרים טבעיים [math]\displaystyle{ n,k\in\mathbb{N} }[/math] נגדיר [math]\displaystyle{ x^{\frac{n}{k}}=\sqrt[k]{x^n} }[/math]
- לכל מספר ממשי [math]\displaystyle{ x\in\mathbb{R} }[/math] נגדיר [math]\displaystyle{ x^0=1 }[/math]
- מה לגבי חזקות ממשיות אי רציונליות?
- נגדיר אותן באמצעות גבול של חזקות רציונאליות
- לכל מספר ממשי [math]\displaystyle{ x\in\mathbb{R} }[/math] ולכל חזקה ממשית שלילית [math]\displaystyle{ -a\lt 0 }[/math] נגדיר [math]\displaystyle{ x^{-a}=\frac{1}{x^a} }[/math]
- לכל [math]\displaystyle{ 0\lt a\neq 1 }[/math] נגדיר את [math]\displaystyle{ log_a(x) }[/math] להיות המספר שa בחזקתו שווה לx.
- חוקי לוגים:
- [math]\displaystyle{ log_a(x)+log_a(y)=log_a(xy) }[/math]
- [math]\displaystyle{ log_a(x)-log_a(y)=log_a\left(\frac{x}{y}\right) }[/math]
- [math]\displaystyle{ log_a(x^y)=y log_a(x) }[/math]
- [math]\displaystyle{ \log_a(x)=\frac{log_b(x)}{log_b(a)} }[/math]
- [math]\displaystyle{ log_a(x)=y }[/math] אם ורק אם [math]\displaystyle{ x=a^y }[/math]
חסמים
- תהי [math]\displaystyle{ A\subseteq \mathbb{R} }[/math] אזי:
- [math]\displaystyle{ M\in\mathbb{A} }[/math] נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
- [math]\displaystyle{ M\in\mathbb{R} }[/math] נקרא חסם מלעיל של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
- [math]\displaystyle{ m\in\mathbb{A} }[/math] נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq m }[/math]
- [math]\displaystyle{ m\in\mathbb{R} }[/math] נקרא חסם מלרע של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq m }[/math]
- כמו כן:
- אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן [math]\displaystyle{ \sup(A) }[/math]
- אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן [math]\displaystyle{ \inf(A) }[/math]
- בשדה הממשיים לכל קבוצה לא ריקה וחסומה מלעיל יש חסם עליון, ולכל קבוצה לא ריקה וחסומה מלרע יש חסם תחתון.
- בשדה הרציונאליים זה לא נכון; לקבוצה [math]\displaystyle{ A=\{x\in\mathbb{Q}|x^2\lt 2\} }[/math] אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.
- תהי [math]\displaystyle{ A\subseteq \mathbb{R} }[/math] ויהי [math]\displaystyle{ M\in\mathbb{R} }[/math] אזי:
- M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר [math]\displaystyle{ M-\varepsilon\lt M }[/math] קיים מספר [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\gt M-\varepsilon }[/math]
- m הוא החסם התחתון של A אם ורק אם m הוא חסם מלרע של A ולכל מספר [math]\displaystyle{ m\lt m+\varepsilon }[/math] קיים מספר [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\lt m+\varepsilon }[/math]
- דוגמא: תהיינה [math]\displaystyle{ \emptyset\neq A,B\subseteq\mathbb{R} }[/math] חסומות מלעיל כך שA אינה מכילה חסמי מלעיל של B, אזי [math]\displaystyle{ \sup(A)\leq\sup(B) }[/math]
שיטות הוכחה בסיסיות
- הוכחת טענות מכומתות - טענות 'לכל' וטענות 'קיים'
פרק 2 - סדרות
הגדרת הגבול
- הגדרת הגבול של סדרה:
- תהי סדרה ממשית [math]\displaystyle{ a_n }[/math] ויהי מספר ממשי [math]\displaystyle{ L\in\mathbb{R} }[/math].
- [math]\displaystyle{ L }[/math] הינו גבול הסדרה [math]\displaystyle{ a_n }[/math] (מסומן [math]\displaystyle{ \lim a_n=L }[/math] או [math]\displaystyle{ a_n\to L }[/math]) אם:
- לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
- לכל מרחק [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים מקום [math]\displaystyle{ K\in\mathbb{N} }[/math] כך שאחריו לכל [math]\displaystyle{ n\gt K }[/math] מתקיים כי [math]\displaystyle{ |a_n-L|\lt \varepsilon }[/math]
- נגדיר ש[math]\displaystyle{ a_n\to\infty }[/math] אם לכל [math]\displaystyle{ M\gt 0 }[/math] קיים [math]\displaystyle{ K\in\mathbb{N} }[/math] כך שלכל [math]\displaystyle{ n\gt K }[/math] מתקיים כי [math]\displaystyle{ a_n\gt M }[/math]
- נגדיר ש[math]\displaystyle{ a_n\to -\infty }[/math] אם [math]\displaystyle{ -a_n\to\infty }[/math]
- טענה: תהי [math]\displaystyle{ a_n\to \infty }[/math] אזי [math]\displaystyle{ \frac{1}{a_n}\to 0 }[/math]
- טענה: תהי [math]\displaystyle{ 0\neq a_n\to 0 }[/math] אזי [math]\displaystyle{ \frac{1}{|a_n|}\to\infty }[/math]
- אם [math]\displaystyle{ a_n\to L_1 }[/math] וכן [math]\displaystyle{ a_n\to L_2 }[/math] אזי [math]\displaystyle{ L_1=L_2 }[/math]
- סדרה המתכנסת לגבול סופי חסומה.
- [math]\displaystyle{ a_n\to L \iff a_{n+1}\to L }[/math]
- בפרט, כל שינוי, תוספת או החסרה של מספר סופי של איברים לא משפיע על גבול הסדרה.
- תהי סדרה[math]\displaystyle{ a_n }[/math] המתכנסת לגבול סופי והמקיימת לכל [math]\displaystyle{ n }[/math] כי [math]\displaystyle{ a\lt a_n }[/math] אזי [math]\displaystyle{ \lim a_n\geq a }[/math]
שאיפה לאפס
- תהי סדרה [math]\displaystyle{ a_n }[/math] ויהי [math]\displaystyle{ L\in\mathbb{R} }[/math] אזי [math]\displaystyle{ a_n\to L }[/math] אם ורק אם [math]\displaystyle{ |a_n-L|\to 0 }[/math]
- בפרט [math]\displaystyle{ a_n\to 0 }[/math] אם ורק אם [math]\displaystyle{ |a_n|\to 0 }[/math]
- תהי [math]\displaystyle{ a_n\to 0 }[/math] ותהי [math]\displaystyle{ b_n }[/math] חסומה, אזי [math]\displaystyle{ a_nb_n\to 0 }[/math]
- תהיינה [math]\displaystyle{ a_n,b_n\to 0 }[/math] אזי גם [math]\displaystyle{ a_n+b_n\to 0 }[/math]
משפטי סנדביץ'
- משפט הסנדביץ' -
- תהיינה סדרות המקיימות לכל n כי [math]\displaystyle{ a_n\leq b_n \leq c_n }[/math]
- כמו כן, יהי [math]\displaystyle{ L\in\mathbb{R} }[/math] כך ש [math]\displaystyle{ a_n,c_n\to L }[/math]
- אזי [math]\displaystyle{ b_n\to L }[/math]
- חצי סנדביץ'-
- תהיינה סדרות המקיימות לכל n כי [math]\displaystyle{ a_n\leq b_n }[/math]
- כמו כן נתון כי [math]\displaystyle{ a_n\to\infty }[/math]
- אזי [math]\displaystyle{ b_n\to \infty }[/math]
- חצי סנדביץ' על הרצפה -
- תהיינה סדרות המקיימות לכל n כי [math]\displaystyle{ |a_n|\leq b_n }[/math]
- כמו כן נתון כי [math]\displaystyle{ b_n\to 0 }[/math]
- אזי [math]\displaystyle{ a_n\to 0 }[/math]
מבוא לחשבון גבולות (אריתמטיקה של גבולות)
- תהיינה [math]\displaystyle{ b_n\to L_b\in \mathbb{R} }[/math], [math]\displaystyle{ a_n\to L_a\in \mathbb{R} }[/math] אזי
- [math]\displaystyle{ a_n+b_n\to L_a+L_b }[/math]
- [math]\displaystyle{ a_n\cdot b_n \to L_a\cdot L_b }[/math]
- אם [math]\displaystyle{ L_b\neq 0 }[/math] אזי [math]\displaystyle{ \frac{a_n}{b_n}\to\frac{L_a}{L_b} }[/math]
אינדוקציה
- משפט האינדוקציה המתמטית
- תהי סדרת טענות כך שמתקיימים שני התנאים הבאים:
- הטענה הראשונה נכונה.
- לכל [math]\displaystyle{ n\in \mathbb{N} }[/math] אם הטענה הn מתקיימת אז גם הטענה הn+1 מתקיימת.
- אזי כל הטענות בסדרה נכונות
- אי שיוויון ברנולי: יהי [math]\displaystyle{ -1\lt x\in\mathbb{R} }[/math] אזי לכל [math]\displaystyle{ n\in\mathbb{N} }[/math] מתקיים כי [math]\displaystyle{ (1+x)^n\geq 1+nx }[/math]
חזקת אינסוף
- תהי [math]\displaystyle{ 0\lt a_n\to a }[/math] אזי:
- אם [math]\displaystyle{ a\gt 1 }[/math] מתקיים כי [math]\displaystyle{ (a_n)^n \to \infty }[/math]
- אם [math]\displaystyle{ a\lt 1 }[/math] מתקיים כי [math]\displaystyle{ (a_n)^n\to 0 }[/math]
- שימו לב כי ייתכן ו[math]\displaystyle{ 1\lt a_n\to 1 }[/math], כלומר איברי הסדרה גדולים מ1 אך גבולה הוא 1 ואז המשפט אינו תקף.
כלל המנה
- כלל המנה (הוכחה בסיכום הבא על אי-שוויון הממוצעים).
- תהי סדרה [math]\displaystyle{ a_n }[/math] המקיימת כי גבול המנה הוא [math]\displaystyle{ \left|\frac{a_{n+1}}{a_n}\right|\to L }[/math] אזי:
- אם [math]\displaystyle{ 1\lt L\leq\infty }[/math] מתקיים כי [math]\displaystyle{ |a_n|\to\infty }[/math]
- אם [math]\displaystyle{ 0\leq L\lt 1 }[/math] מתקיים כי [math]\displaystyle{ a_n\to 0 }[/math]
- מתקיים כי [math]\displaystyle{ \sqrt[n]{|a_n|}\to L }[/math]
- תהי סדרה [math]\displaystyle{ a_n }[/math] המקיימת כי גבול המנה הוא [math]\displaystyle{ \left|\frac{a_{n+1}}{a_n}\right|\to L }[/math] אזי:
- דוגמאות:
- [math]\displaystyle{ \frac{n}{2^n}\to 0 }[/math]
- [math]\displaystyle{ \sqrt[n]{n}\to 1 }[/math]
- עבור [math]\displaystyle{ a\gt 0 }[/math] מתקיים [math]\displaystyle{ \sqrt[n]{a}\to 1 }[/math]
- [math]\displaystyle{ \sqrt[n]{n!}\to \infty }[/math]
חזקות של גבולות
- יהי [math]\displaystyle{ 0\lt a\in\mathbb{R} }[/math] ותהי [math]\displaystyle{ b_n\to 0 }[/math] אזי [math]\displaystyle{ a^{b_n}\to 1 }[/math]
- רעיון הוכחה: אם [math]\displaystyle{ a\geq 1 }[/math] אזי [math]\displaystyle{ a^{-\frac{1}{m}}\leq a^{b_n}\leq a^{\frac{1}{m}} }[/math] והרי [math]\displaystyle{ \sqrt[m]{a}\to 1 }[/math] לפי כלל המנה
- יהי [math]\displaystyle{ 0\lt a\in\mathbb{R} }[/math] ותהי [math]\displaystyle{ b_n\to L\in \mathbb{R} }[/math] אזי [math]\displaystyle{ a^{b_n}\to a^L }[/math]
- רעיון הוכחה: [math]\displaystyle{ a^{b_n} = a^{b_n-L}\cdot a^L\to 1\cdot a^L }[/math]
- תהי [math]\displaystyle{ a_n\to 1 }[/math] ותהי [math]\displaystyle{ b_n\to L\in\mathbb{R} }[/math] אזי [math]\displaystyle{ a_n^{b_n}\to 1 }[/math]
- רעיון הוכחה:[math]\displaystyle{ a_n^{[L]-1}\leq a_n^{b_n}\leq a_n^{[L]+1} }[/math] לפי חשבון גבולות (כפל) שני הצדדים שואפים ל1. (אם [math]\displaystyle{ a_n\lt 1 }[/math] אי השיוויון הפוך).
- תהי [math]\displaystyle{ a_n\to a\gt 0 }[/math] ותהי [math]\displaystyle{ b_n\to L\in\mathbb{R} }[/math] אזי [math]\displaystyle{ a_n^{b_n}\to a^L }[/math]
- רעיון הוכחה: [math]\displaystyle{ a_n^{b_n}=\left(\frac{a_n}{a}\right)^{b_n} \cdot a^{b_n} \to 1\cdot a^L }[/math]
- תהי [math]\displaystyle{ 0\leq a_n\to 0 }[/math] ותהי [math]\displaystyle{ b_n\to L\gt 0 }[/math] אזי [math]\displaystyle{ a_n^{b_n}\to 0 }[/math]
- רעיון הוכחה: החל משלב מסויים [math]\displaystyle{ 0\leq a_n^{b_n}\leq \frac{1}{m^{\frac{L}{2}}} }[/math]
סדרות מונוטוניות והמספר e
- כל סדרה מונוטונית הינה חסומה מתכנסת לגבול סופי, או שאינה חסומה ושואפת לגבול אינסופי.
- דוגמא: נביט בסדרה [math]\displaystyle{ a_1\gt 0,\ a_{n+1}=a_n^2+a_n }[/math]
- כיוון ש [math]\displaystyle{ a_{n+1}-a_n=a_n^2\geq 0 }[/math] מדובר בסדרה מונוטונית עולה.
- אם הסדרה חסומה:
- קיים לה גבול סופי [math]\displaystyle{ a_n\to L }[/math]
- נחשב את גבול שני צידי המשוואה [math]\displaystyle{ a_{n+1}=a_n^2+a_n }[/math]
- לכן [math]\displaystyle{ L=L^2+L }[/math] ולכן [math]\displaystyle{ L=0 }[/math]
- אבל הסדרה עולה וחסומה מלמטה ע"י האיבר הראשון ולכן [math]\displaystyle{ L\geq a_1 }[/math]
- כלומר [math]\displaystyle{ L=0\lt a_1\leq L }[/math] בסתירה.
- מכאן הסדרה אינה חסומה, וכיוון שהיא עולה [math]\displaystyle{ a_n\to\infty }[/math]
- המספר e (הוכחות בעזרת אי-שוויון הממוצעים).
- [math]\displaystyle{ 2\lt e\lt 4 }[/math].
תתי סדרות וגבולות חלקיים
הגדרת גבול חלקי
- לכל סדרת מקומות [math]\displaystyle{ k_n\in\mathbb{N} }[/math] המקיימת לכל [math]\displaystyle{ n }[/math] כי [math]\displaystyle{ k_n\lt k_{n+1} }[/math] נגדיר כי [math]\displaystyle{ a_{k_n} }[/math] הינה תת סדרה של הסדרה [math]\displaystyle{ a_n }[/math]
- שימו לב כי מקומות תת הסדרה הם באותו הסדר כמו בסדרה המקורית, ואסור לחזור על איבר פעמיים.
- לדוגמא:
- נביט בסדרה [math]\displaystyle{ a_n=(-1)^n }[/math]
- אזי [math]\displaystyle{ a_{2n}=(-1)^{2n}=1 }[/math] היא תת הסדרה של האיברים במקומות הזוגיים [math]\displaystyle{ k_n=2n }[/math]
- נגדיר ש[math]\displaystyle{ L }[/math] הוא גבול חלקי של הסדרה [math]\displaystyle{ a_n }[/math] אם קיימת תת סדרה [math]\displaystyle{ a_{k_n} }[/math] כך ש [math]\displaystyle{ a_{k_n}\to L }[/math]
- טענה - יהי [math]\displaystyle{ L }[/math] סופי או אינסופי, אזי:
- [math]\displaystyle{ a_n\to L }[/math] אם ורק אם לכל תת סדרה [math]\displaystyle{ a_{k_n} }[/math] מתקיים כי [math]\displaystyle{ a_{k_n}\to L }[/math]
משפט בולצאנו-ויירשטראס
- לכל סדרה יש תת סדרה מונוטונית.
- משפט בולצאנו-ויירשטראס - לכל סדרה חסומה יש תת סדרה מתכנסת.
גבול עליון וגבול תחתון
- תהי סדרה [math]\displaystyle{ a_n }[/math]
- נגדיר את הגבול העליון שלה (limsup):
- אם [math]\displaystyle{ a_n }[/math] אינה חסומה מלעיל אזי [math]\displaystyle{ \overline{\lim}a_n=\infty }[/math]
- אם [math]\displaystyle{ a_n }[/math] חסומה מלעיל ויש לה גבול חלקי סופי כלשהו, נגדיר את [math]\displaystyle{ \overline{\lim}a_n }[/math] להיות החסם העליון של קבוצת הגבולות החלקיים של הסדרה
- אחרת, נגדיר [math]\displaystyle{ \overline{\lim}a_n=-\infty }[/math]
- נגדיר את הגבול התחתון שלה (liminf):
- אם [math]\displaystyle{ a_n }[/math] אינה חסומה מלרע אזי [math]\displaystyle{ \underline{\lim}a_n=-\infty }[/math]
- אם [math]\displaystyle{ a_n }[/math] חסומה מלרע ויש לה גבול חלקי סופי כלשהו, נגדיר את [math]\displaystyle{ \underline{\lim}a_n }[/math] להיות החסם התחתון של קבוצת הגבולות החלקיים של הסדרה
- אחרת, נגדיר [math]\displaystyle{ \underline{\lim}a_n=\infty }[/math]
- לכל גבול חלקי L של הסדרה מתקיים כי:
- [math]\displaystyle{ \underline{\lim}a_n\leq L\leq \overline{\lim}a_n }[/math]
- הגבול העליון והגבול התחתון הם גבולות חלקיים (כלומר יש תת סדרה ששואפת לגבול העליון, ויש תת סדרה ששואפת לגבול התחתון).
- לכל [math]\displaystyle{ -\infty\leq L\leq \infty }[/math] מתקיים כי [math]\displaystyle{ a_n \to L }[/math] אם ורק אם [math]\displaystyle{ \underline{\lim}a_n=\overline{\lim}a_n=L }[/math]
תתי סדרות המכסות סדרה
- אם ניתן לחלק סדרה למספר סופי של תתי סדרות המכסות את כולה, וכולן שואפות לאותו הגבול - אזי הסדרה כולה שואפת לגבול זה.
- ייתכן שניתן לחלק סדרה לאינסוף תתי סדרות שכולם שואפות לאותו הגבול, אך הסדרה לא תשאף לגבול זה.
כלל הe
- תהי [math]\displaystyle{ 0\neq a_n\to 0 }[/math] אזי [math]\displaystyle{ (1+a_n)^{\frac{1}{a_n}}\to e }[/math]
- אם [math]\displaystyle{ a_n\to 1 }[/math] אזי [math]\displaystyle{ a_n^{b_n}\to e^{\lim b_n\cdot(a_n-1)} }[/math]
- [math]\displaystyle{ a_n^{b_n}=\left[\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\right]^{ b_n\cdot (a_n-1)} }[/math].
- [math]\displaystyle{ \left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\to e }[/math] בין אם [math]\displaystyle{ a_n-1 }[/math] שלילי או חיובי, לפי הטענות לעיל.
- שימו לב שאם [math]\displaystyle{ a_n=1 }[/math], אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק ב[math]\displaystyle{ a_n-1 }[/math] ששווה אפס.
- דוגמא:
- [math]\displaystyle{ \lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3 }[/math]
חשבון גבולות (אריתמטיקה של גבולות)
- אריתמטיקה מורחבת (הכתיב הוא מקוצר ואינו מדוייק):
- חסומה כפול אפיסה = אפיסה
- חסומה חלקי אינסוף = אפיסה
- [math]\displaystyle{ \infty+\infty=\infty }[/math]
- [math]\displaystyle{ \infty\cdot\infty=\infty }[/math]
- [math]\displaystyle{ \infty^\infty=\infty }[/math]
- [math]\displaystyle{ \frac{1}{0}\neq\infty }[/math]
- [math]\displaystyle{ \frac{1}{0^+}=\infty }[/math]
- [math]\displaystyle{ 0^\infty = 0 }[/math]
- אינסוף כפול סדרה השואפת למספר חיובי = אינסוף.
- יש גבול סופי + אין גבול סופי = אין גבול סופי.
- אינסוף ועוד חסומה שווה אינסוף.
- אינסוף בחזקת מספר חיובי זה אינסוף
- סדרה השואפת לגבול גדול מאחד, בחזקת אינסוף זה אינסוף.
- סדרה השואפת לגבול בין מינוס אחד לאחד לא כולל, בחזקת אינסוף, זה אפס.
המקרים הבעייתיים
- המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
- [math]\displaystyle{ \frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty }[/math]
קריטריון קושי לסדרות
- דוגמא: הסדרה [math]\displaystyle{ a_n=\sqrt{n} }[/math] מקיימת כי [math]\displaystyle{ a_{n+1}-a_n\to 0 }[/math] אך היא אינה מתכנסת למספר סופי אלא שואפת לאינסוף.
- הגדרה: סדרה [math]\displaystyle{ a_n }[/math] מקיימת את קריטריון קושי (ונקראת סדרת קושי) אם:
- לכל מרחק [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים מקום [math]\displaystyle{ K\in\mathbb{N} }[/math] כך שאחריו לכל זוג מקומות [math]\displaystyle{ m\gt n\gt K }[/math] מתקיים כי [math]\displaystyle{ |a_m-a_n|\lt \varepsilon }[/math] (המרחק בין האיברים במקומות הללו קטן מאפסילון).
- משפט: בממשיים, סדרה מתכנסת לגבול סופי אם ורק אם היא סדרת קושי.
- תרגיל: תהי סדרה המקיימת לכל n כי [math]\displaystyle{ |a_{n+1}-a_n|\lt \frac{1}{2^n} }[/math] אזי היא מתכנסת למספר סופי.
פרק 3 - טורים
מבוא והגדרה
- תהי סדרה [math]\displaystyle{ a_n }[/math], נגדיר את סדרת הסכומים החלקיים (סס"ח בקיצור) של [math]\displaystyle{ a_n }[/math] ע"י
- [math]\displaystyle{ S_1=a_1 }[/math]
- ולכל [math]\displaystyle{ n\in\mathbb{N} }[/math] מתקיים [math]\displaystyle{ S_{n+1}=S_n+a_{n+1} }[/math]
- במילים אחרות, [math]\displaystyle{ S_n = \sum_{k=1}^n a_k }[/math]
- הגדרת הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math]
- אומרים כי [math]\displaystyle{ \sum_{k=1}^\infty a_k =L }[/math] אם [math]\displaystyle{ \lim S_n = L }[/math]
- אם לסס"ח יש גבול סופי אומרים כי הטור מתכנס, ואילו אם אין לה גבול סופי אומרים כי הטור מתבדר.
- שימו לב כי בעצם:
- [math]\displaystyle{ \sum_{k=1}^\infty a_k = \lim_{n\to\infty}\sum_{k=1}^n a_k }[/math]
- אם הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס, אזי [math]\displaystyle{ a_n\to 0 }[/math]
- הוכחה:
- [math]\displaystyle{ S_n,S_{n+1}\to L }[/math]
- לכן [math]\displaystyle{ a_{n+1}=S_{n+1}-S_n\to L-L=0 }[/math]
- [math]\displaystyle{ \sum_{k=1}^\infty a_k = a_1 + \sum_{k=2}^\infty a_k }[/math]
- מסקנה: שינוי מספר סופי של איברי הטור לא משפיע על התכנסות, אבל כן משפיע על סכום הטור.
חשבון טורים
- אם הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס, ו[math]\displaystyle{ c\in\mathbb{R} }[/math] קבוע אזי
- [math]\displaystyle{ \sum_{k=1}^\infty c\cdot a_k = c\cdot \sum_{k=1}^\infty a_k }[/math]
- אם הטורים [math]\displaystyle{ \sum_{k=1}^\infty a_k,\ \sum_{k=1}^\infty b_k }[/math] מתכנסים אזי
- [math]\displaystyle{ \sum_{k=1}^\infty (a_k+b_k) = \sum_{k=1}^\infty a_k + \sum_{k=1}^\infty b_k }[/math]
הטור ההנדסי
- הטור [math]\displaystyle{ \sum_{k=0}^\infty x^k }[/math] מתכנס אם ורק אם [math]\displaystyle{ |x|\lt 1 }[/math] וכאשר הוא מתכנס מתקיים כי:
- [math]\displaystyle{ \sum_{k=0}^\infty x^k = \frac{1}{1-x} }[/math] וכמו כן [math]\displaystyle{ \sum_{k=1}^\infty x^k = \frac{x}{1-x} }[/math]
טור מקל סלפי (טלסקופי)
- חישוב [math]\displaystyle{ \sum_{k=2}^\infty \frac{1}{k^2 -k} }[/math] על ידי הסס"ח הטלסקופי
- חישוב [math]\displaystyle{ \sum_{k=1}^\infty \ln\left(\frac{k}{k+1}\right) }[/math] על ידי הסס"ח הטלסקופי
העשרה על סוגי סכימה
התכנסות בהחלט
- משפט: אם טור הערכים המוחלטים [math]\displaystyle{ \sum_{k=1}^\infty |a_k| }[/math] מתכנס, אזי גם הטור המקורי [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס.
- הגדרה:
- הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] נקרא מתכנס בהחלט אם [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס וגם [math]\displaystyle{ \sum_{k=1}^\infty |a_k| }[/math] מתכנס
- הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] נקרא מתכנס בתנאי אם [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס אך [math]\displaystyle{ \sum_{k=1}^\infty |a_k| }[/math] מתבדר
- הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] נקרא מתבדר אם [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתבדר וגם [math]\displaystyle{ \sum_{k=1}^\infty |a_k| }[/math] מתבדר
- משפט: (הכללת אי שיוויון המשולש) יהי טור מתכנס בהחלט, אזי:
- [math]\displaystyle{ \left|\sum_{k=0}^\infty a_k\right|\leq \sum_{k=0}^\infty |a_k| }[/math]
- הוכחה:
- לפי אי שיוויון המשולש, לכל n סופי מתקיים כי
- [math]\displaystyle{ \left|\sum_{k=0}^n a_k\right|\leq \sum_{k=0}^n |a_k| }[/math]
- ולכן גם הגבול של הסדרה השמאלית קטן או שווה לגבול של הסדרה הימנית, וזו התוצאה שרצינו.
מבחני התכנסות לטורים חיוביים
הקדמה והטור ההרמוני
- הגדרה: טור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] נקרא טור חיובי אם לכל n מתקיים כי [math]\displaystyle{ a_n\geq 0 }[/math].
- סדרת הסכומים החלקיים של טור חיובי היא מונוטונית עולה, לכן הטור מתכנס אם ורק אם היא חסומה.
- לסס"ח של הטור ההרמוני [math]\displaystyle{ \sum_{k=1}^\infty \frac{1}{k} }[/math] יש תת סדרה ששואפת לאינסוף, ולכן הטור מתבדר:
- [math]\displaystyle{ \frac{1}{n+1}+...+\frac{1}{2n}\geq \frac{1}{2n}+...+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2} }[/math]
- [math]\displaystyle{ S_1 =1\geq \frac{1}{2} }[/math]
- [math]\displaystyle{ S_2 =1+\frac{1}{2}\geq 2\cdot \frac{1}{2} }[/math]
- [math]\displaystyle{ S_4 =1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\geq 3\cdot \frac{1}{2} }[/math]
- ...
- באופן כללי [math]\displaystyle{ S_{2^{n-1}}\geq n\cdot \frac{1}{2}\to\infty }[/math]
מבחני ההשוואה
- מבחן ההשוואה הראשון-
- תהיינה סדרות כך ש [math]\displaystyle{ 0\leq a_n\leq b_n }[/math] לכל n. אזי:
- אם הטור הגדול יותר [math]\displaystyle{ \sum_{k=1}^\infty b_k }[/math] מתכנס בוודאי הטור הקטן יותר [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס.
- נובע מכך לוגית שאם הטור הקטן מתבדר, הטור הגדול מתבדר.
- דוגמא:
- [math]\displaystyle{ \frac{1}{n^2} \leq \frac{1}{n^2-n} }[/math]
- ראינו שהטור החיובי [math]\displaystyle{ \sum_{k=2}^\infty \frac{1}{k^2-k} }[/math] מתכנס ולכן לפי מבחן ההשוואה הראשון גם הטור החיובי [math]\displaystyle{ \sum_{k=1}^\infty\frac{1}{k^2} }[/math] מתכנס
- מבחן ההשוואה הגבולי-
- תהיינה סדרות [math]\displaystyle{ 0\leq a_n,b_n }[/math] כך ש [math]\displaystyle{ \frac{a_n}{b_n}\to c }[/math] אזי:
- אם [math]\displaystyle{ c=\infty }[/math] אזי [math]\displaystyle{ a_n\gt b_n }[/math] החל משלב מסויים, ולכן אם [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס גם [math]\displaystyle{ \sum_{k=1}^\infty b_k }[/math] מתכנס
- אם [math]\displaystyle{ c=0 }[/math] אזי [math]\displaystyle{ a_n\lt b_n }[/math] החל משלב מסויים, ולכן אם [math]\displaystyle{ \sum_{k=1}^\infty b_k }[/math] מתכנס גם [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס
- אחרת, [math]\displaystyle{ 0\lt c\in\mathbb{R} }[/math] והטורים חברים [math]\displaystyle{ \sum_{k=1}^\infty a_k ~ \sum_{k=1}^\infty b_k }[/math], כלומר [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס אם ורק אם [math]\displaystyle{ \sum_{k=1}^\infty b_k }[/math] מתכנס
- דוגמא:
- [math]\displaystyle{ \sum_{k=1}^\infty \frac{1}{\left(\sqrt[k]{k!}\right)^2} \sim \sum_{k=1}^\infty\frac{1}{k^2} }[/math]
מבחני השורש והמנה
- יהי טור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math]
- מבחן המנה -
- אם [math]\displaystyle{ \overline{\lim}\left|\frac{a_{n+1}}{a_n}\right|\lt 1 }[/math] אזי הטור מתכנס בהחלט
- אם [math]\displaystyle{ \underline{\lim}\left|\frac{a_{n+1}}{a_n}\right|\gt 1 }[/math] אזי [math]\displaystyle{ a_n\not\to 0 }[/math] ולכן הטור מתבדר
- מבחן השורש -
- אם [math]\displaystyle{ \overline{\lim}\sqrt[n]{|a_n|}\lt 1 }[/math] אזי הטור מתכנס בהחלט
- אם [math]\displaystyle{ \overline{\lim}\sqrt[n]{|a_n|}\gt 1 }[/math] אזי [math]\displaystyle{ a_n\not\to 0 }[/math] ולכן הטור מתבדר
- שימו לב - במבחן השורש לוקחים את הגבול העליון בשני המקרים, ובמבחן המנה צריך שהעליון יהיה קטן מאחד, או התחתון גדול מאחד. זו לא טעות...
מבחן העיבוי
- מבחן העיבוי-
- תהי [math]\displaystyle{ 0\leq a_n }[/math] סדרה מונוטונית יורדת אזי הטור [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] מתכנס אם ורק אם [math]\displaystyle{ \sum_{k=1}^\infty 2^k \cdot a_{(2^k)} }[/math] מתכנס
- הוכחה:
- ראשית, נוכיח באינדוקציה כי [math]\displaystyle{ \sum_{k=1}^n 2^{k-1}a_{2^k} \leq \sum_{k=2}^{2^n} a_k }[/math] כלומר
- [math]\displaystyle{ a_2 + 2\cdot a_4 +4\cdot a_8+... = a_2 + a_4 + a_4 +a_8 + a_8 + a_8 + a_8 + ... \leq a_2 + a_3 + a_4 +a_5 + a_6 +a_7 +a _8 +... }[/math]
- כעת נוכיח באינדוקציה כי [math]\displaystyle{ \sum_{k=0}^{n-1} 2^k a_{2^k}\geq \sum_{k=1}^{2^n-1}a_k }[/math]
- סה"כ אם הטור האחד מתכנס, הסס"ח של השני חסומה ולכן גם השני מתכנס.
הטור ההרמוני המוכלל
- הטור [math]\displaystyle{ \sum_{n=1}^\infty \frac{1}{n^a} }[/math] מתכנס אם ורק אם [math]\displaystyle{ a\gt 1 }[/math]
- דוגמאות:
- [math]\displaystyle{ \sum_{k=2}^\infty\frac{1}{k\cdot\ln(k)} }[/math]
- [math]\displaystyle{ \sum_{k=2}^\infty\frac{1}{\ln(k!)} }[/math]
מבחני התכנסות לטורים כלליים
מבחן דיריכלה
- תהי סדרה [math]\displaystyle{ a_n\to 0 }[/math] סדרה מונוטונית יורדת לאפס
- תהי סדרה [math]\displaystyle{ b_n }[/math] כך שהסס"ח שלה חסומה, כלומר קיים [math]\displaystyle{ M\gt 0 }[/math] כך שלכל n מתקיים [math]\displaystyle{ |S_n|=\left|\sum_{k=1}^nb_k\right|\lt M }[/math]
- אזי הטור [math]\displaystyle{ \sum_{k=1}^\infty a_kb_k }[/math] מתכנס.
- דוגמאות:
- [math]\displaystyle{ \sum\frac{\sin(n)}{n} }[/math]
- [math]\displaystyle{ \sum\frac{|\sin(n)|}{n} }[/math]
- הוכחה:
- נסמן ב[math]\displaystyle{ D_n }[/math] את סדרת הסכומים החלקיים של הטור [math]\displaystyle{ \sum_{k=1}^\infty a_kb_k }[/math] וב[math]\displaystyle{ S_n }[/math] את סדרת הסכומים החלקיים של [math]\displaystyle{ b_n }[/math].
- יהיו [math]\displaystyle{ m\gt n\in\mathbb{N} }[/math]
- [math]\displaystyle{ D_m-D_n = \sum_{k=n+1}^m a_kb_k = \sum_{k=n+1}^m a_k(S_k -S_{k-1}) = \sum_{k=n+1}^m a_kS_k - \sum_{k=n}^{m-1} a_{k+1}S_k = a_mS_m -a_{n+1}S_n + \sum_{k=n+1}^{m-1} S_k(a_k-a_{k+1}) }[/math]
- [math]\displaystyle{ |D_m-D_n|\leq |a_m||S_m| + |a_{n+1}| |S_n| +\sum_{k=n+1}^{m-1} |S_k||a_k-a_{k+1}| }[/math]
- כעת נשתמש בעובדה כי [math]\displaystyle{ |S_n|\lt M }[/math] לכל n, [math]\displaystyle{ a_n }[/math] סדרה חיובית, וכן [math]\displaystyle{ a_n - a_{n+1}\geq 0 }[/math] לכל n.
- [math]\displaystyle{ |D_m-D_n|\leq M\left(a_m + a_{n+1} +\sum_{k=n+1}^{m-1} a_k-a_{k+1}\right)= 2Ma_{n+1}\to 0 }[/math]
- לכן [math]\displaystyle{ D_n }[/math] סדרת קושי ולכן מתכנסת לגבול סופי, כלומר הטור מתכנס.
מבחן לייבניץ
- תהי [math]\displaystyle{ a_n\to 0 }[/math] סדרה מונוטונית יורדת לאפס. אזי:
- הטור [math]\displaystyle{ \sum_{k=1}^\infty (-1)^{k+1}a_k }[/math] מתכנס.
- [math]\displaystyle{ \left|\sum_{k=1}^\infty (-1)^{k+1}a_k\right|\leq a_1 }[/math].
- הוכחה:
- כיוןן שהסס"ח של [math]\displaystyle{ (-1)^{n+1} }[/math] חסומה הטור מתכנס לפי מבחן דיריכלה.
- נסמן ב[math]\displaystyle{ S_n }[/math] את הסס"ח של הטור [math]\displaystyle{ \sum_{k=1}^\infty (-1)^{k+1}a_k }[/math].
- כיוון שהסדרה [math]\displaystyle{ a_n }[/math] יורדת, ניתן להוכיח באינדוקציה כי:
- [math]\displaystyle{ S_{2n}\geq 0 }[/math]
- [math]\displaystyle{ S_{2n-1}\leq a_1 }[/math]
סיכום בדיקת התכנסות 🖖
- כיצד נבחן אם הטור [math]\displaystyle{ \sum a_n }[/math] מתכנס בהחלט, בתנאי או מתבדר?
- אם ניתן להראות כי [math]\displaystyle{ a_n\not\to 0 }[/math] הטור מתבדר
- נבצע מבחני ספוק 🖖
- אם לפי מבחני ההשוואה (הראשון או הגבולי) הטור [math]\displaystyle{ \sum |a_n| }[/math] אינו מתכנס, אז אין התכנסות בהחלט, נעבר לבדוק התכנסות בתנאי.
- אם במבחן המנה או השורש הגבול גדול מ1 הטור מתבדר, אם קטן מ1 הטור מתכנס בהחלט ואם שווה ל1 צריך לנסות משהו אחר.
- אם במבחן העיבוי הטור [math]\displaystyle{ \sum |a_n| }[/math] אינו מתכנס, אז אין התכנסות בהחלט, נעבר לבדוק התכנסות בתנאי.
- אם לא מצאנו התכנסות בהחלט, נבצע מבחנים על טורים כלליים בשביל לבדוק התכנסות בתנאי
- מבחן לייבניץ
- מבחן דיריכלה
- עבודה ישירה על סדרת הסכומים החלקיים (טור טלסקופי למשל)
סכום האיברים החיוביים, וסכום האיברים השליליים
- תהי סדרה [math]\displaystyle{ a_n }[/math] ונגדיר את:
- [math]\displaystyle{ a_n^+=\begin{cases}a_n & a_n\geq 0\\ 0 & a_n\lt 0\end{cases} }[/math]
- [math]\displaystyle{ a_n^-=\begin{cases}0 & a_n\geq 0\\ -a_n & a_n\lt 0\end{cases} }[/math]
- [math]\displaystyle{ a_n=a_n^+-a_n^- }[/math]
- [math]\displaystyle{ |a_n|=a_n^++a_n^- }[/math]
- הטור [math]\displaystyle{ \sum a_k }[/math] מתכנס בהחלט אם ורק אם הטורים [math]\displaystyle{ \sum a_k^+, \sum a_k^- }[/math] מתכנסים שניהם.
- אם הטור [math]\displaystyle{ \sum a_k }[/math] מתכנס בתנאי אזי הטורים [math]\displaystyle{ \sum a_k^+, \sum a_k^- }[/math] מתבדרים שניהם ושואפים לאינסוף.
- כפי שהוכחנו בעבר בדרך שונה, אם הטור מתכנס בהחלט נובע ש[math]\displaystyle{ \sum a_k^+, \sum a_k^- }[/math] מתכנסים שניהם, וביחד עם העובדה ש[math]\displaystyle{ a_n=a_n^+-a_n^- }[/math] נובע שהטור מתכנס.
שינוי סדר הסכימה
- תהי [math]\displaystyle{ f:\mathbb{N}\to\mathbb{N} }[/math] פונקציה הפיכה ותהי סדרה [math]\displaystyle{ a_n }[/math] אז נאמר ש[math]\displaystyle{ p_n=a_{f(n)} }[/math] היא שינוי סדר של הסדרה [math]\displaystyle{ a_n }[/math].
- תרגיל - אם [math]\displaystyle{ a_n\to L }[/math] גם שינוי הסדר מקיים [math]\displaystyle{ p_n\to L }[/math]
- דוגמא:
- [math]\displaystyle{ a_n=1,-1,1,-1,... }[/math]
- [math]\displaystyle{ f(n)=1,3,2,5,7,4,9,11,6,... }[/math]
- [math]\displaystyle{ p_n=a_{f(n)}=1,1,-1,1,1,-1,... }[/math]
- בדוגמא האחרונה:
- נסמן ב[math]\displaystyle{ S_n }[/math] את הסס"ח של [math]\displaystyle{ a_n }[/math] ומתקיים כי:
- [math]\displaystyle{ S_n=1,0,1,0,... }[/math]
- נסמן ב[math]\displaystyle{ D_n }[/math] את הסס"ח של שינוי הסדר [math]\displaystyle{ p_n }[/math], מתקיים כי:
- [math]\displaystyle{ D_n =1,2,1,2,3,2,3,4,3,... }[/math]
- שינוי הסדר אמנם הותיר את הטור מתבדר, אך הפך את סדרת הסכומים החלקיים מחסומה לשואפת לאינסוף.
משפט רימן
- משפט רימן - יהי טור מתכנס בתנאי [math]\displaystyle{ \sum_{k=1}^\infty a_k }[/math] אזי לכל [math]\displaystyle{ -\infty\leq S \leq \infty }[/math] קיים שינוי סדר כך ש [math]\displaystyle{ \sum_{k=1}^\infty p_k=S }[/math]
- כלומר, אם הטור מתכנס בתנאי, ניתן לגרום לו להתכנס לכל ערך שנרצה (ואף לשאוף לפלוס או מינוס אינסוף), על ידי שינוי סדר איברי הסדרה.
שינוי סדר הסכימה של טור מתכנס בהחלט
- יהי טור מתכנס בהחלט [math]\displaystyle{ \sum_{k=1}^\infty a_k =S }[/math] אזי לכל שינוי סדר [math]\displaystyle{ p_n }[/math] מתקיים כי [math]\displaystyle{ \sum_{k=1}^\infty p_k=S }[/math]
- כלומר, שינוי סדר איברי הסדרה אינו משפיע על סכום הטור.
פרק 4 - פונקציות ורציפות
מבוא לגבולות
- מבוא לגבולות (שיטות אלגבריות: כפל בצמוד, הוצאת חזקה משמעותית, חילוק פולינומים).
- [math]\displaystyle{ \lim_{x\to 2}\frac{x^2-4}{x-2} }[/math]
- [math]\displaystyle{ \lim_{x\to\infty}\frac{2x^2+5x+3}{3x^2-100} }[/math]
- [math]\displaystyle{ \lim_{x\to \infty}\sqrt{x^2+1}-x }[/math]
- [math]\displaystyle{ \lim_{x\to \infty}\sqrt{x^2+x+1}-x }[/math]
- [math]\displaystyle{ \lim_{x\to\infty}x^2-x }[/math]
הגדרת הגבול לפי קושי
- [math]\displaystyle{ \lim_{x\to x_0}f(x)=L }[/math] אם לכל סביבה של L בציר y קיימת סביבה של [math]\displaystyle{ x_0 }[/math] בציר x, כך שלכל ערכי x בסביבה של [math]\displaystyle{ x_0 }[/math] פרט אולי ל[math]\displaystyle{ x_0 }[/math] עצמו, ערכי ציר y כלומר [math]\displaystyle{ f(x) }[/math] נמצאים בסביבה של L בציר y.
- דוגמאות:
- [math]\displaystyle{ \lim_{x\to 3} 2x+1=7 }[/math] אם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל x המקיים [math]\displaystyle{ 0\neq |x-3|\lt \delta }[/math] מתקיים [math]\displaystyle{ |2x+1-7|\lt \varepsilon }[/math]
- [math]\displaystyle{ \lim_{x\to 2^-}\frac{1-x}{\sqrt{2-x}}=-\infty }[/math] אם לכל [math]\displaystyle{ M\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל x המקיים [math]\displaystyle{ 2-\delta\lt x\lt 2 }[/math] מתקיים כי [math]\displaystyle{ \frac{1-x}{\sqrt{2-x}}\lt -M }[/math]
- [math]\displaystyle{ y=a }[/math] אסימפטוטה אופקית מימין של [math]\displaystyle{ f(x) }[/math] אם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ K\gt 0 }[/math] כך שלכל x המקיים [math]\displaystyle{ x\gt K }[/math] מתקיים כי [math]\displaystyle{ |f(x)-a|\lt \varepsilon }[/math]
הגדרת הגבול לפי היינה
- [math]\displaystyle{ \lim_{x\to x_0}f(x)=L }[/math] אם לכל סדרת מספרים על ציר איקס [math]\displaystyle{ x_0\neq a_n\to x_0 }[/math] סדרת המספרים על ציר y מקיימת [math]\displaystyle{ f(a_n)\to L }[/math]
- [math]\displaystyle{ \lim_{x\to x_0^+}f(x)=L }[/math] אם לכל סדרת מספרים על ציר איקס [math]\displaystyle{ x_0\lt a_n\to x_0 }[/math] סדרת המספרים על ציר y מקיימת [math]\displaystyle{ f(a_n)\to L }[/math]
- [math]\displaystyle{ \lim_{x\to x_0^-}f(x)=L }[/math] אם לכל סדרת מספרים על ציר איקס [math]\displaystyle{ x_0\gt a_n\to x_0 }[/math] סדרת המספרים על ציר y מקיימת [math]\displaystyle{ f(a_n)\to L }[/math]
הגדרה זו שקולה להגדרה של קושי, כלומר הגבול שווה לL לפי קושי אם ורק אם הוא שווה לL לפי היינה.
- מרבית כללי האריתמטיקה המורחבות נובעים "בחינם" עבור פונקציות
- [math]\displaystyle{ \lim_{x\to x_0}f(x)=L }[/math] אם ורק אם [math]\displaystyle{ \lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=L }[/math]
הפונקציות הטריגונומטריות
- הגדרת סינוס וקוסינוס ע"י מעגל היחידה.
- [math]\displaystyle{ sin^2(x)+cos^2(x)=1 }[/math]
- [math]\displaystyle{ sin(-x)=-sin(x),cos(-x)=cos(x) }[/math]
- [math]\displaystyle{ sin(a+b)=sin(a)cos(b)+sin(b)cos(a),cos(a+b)=cos(a)cos(b)-sin(a)sin(b) }[/math]
- [math]\displaystyle{ sin(2x)=2sin(x)cos(x),cos(2x)=cos^2(x)-sin^2(x) }[/math]
-
- עבור זוית [math]\displaystyle{ 0\lt x\lt \frac{\pi}{2} }[/math] שטח המשולש חסום בשטח הגזרה (משולש פיצה עם הקשה) שחסום בשטח המשולש:
- [math]\displaystyle{ S_{\triangle AOB}\lt S_{\bigcirc AOB}\lt S_{\triangle AOD} }[/math]
- [math]\displaystyle{ \frac{sin(x)}{2}\lt \frac{x}{2}\lt \frac{tan(x)}{2} }[/math]
- כיוון ש[math]\displaystyle{ 0\lt sin(x)\lt x }[/math] בתחום [math]\displaystyle{ (0,\frac{\pi}{2}) }[/math], נובע לפי סנדוויץ' ש[math]\displaystyle{ \lim_{x\to 0^+}sin(x)=0 }[/math].
- כיוון שמדובר בפונקציה אי זוגית, נובע שזה גם הגבול משני הצדדים.
- כעת בתחום [math]\displaystyle{ (-\frac{\pi}{2},\frac{\pi}{2}) }[/math] הקוסינוס חיובית ולכן [math]\displaystyle{ cos(x)=\sqrt{1-sin^2(x)} }[/math] ונובע כי [math]\displaystyle{ \lim_{x\to 0}cos(x)=1 }[/math].
- נחלק את אי השיוויון הטריגונומטרי בסינוס ונקבל:
- [math]\displaystyle{ 1\lt \frac{x}{sin(x)}\lt \frac{1}{cos(x)} }[/math]
- לפי כלל הסנדביץ [math]\displaystyle{ \lim_{x\to 0^+}\frac{sin(x)}{x}=1 }[/math]
- כיוון שמדובר בפונקציה זוגית, נובע שהגבול משני הצדדים שווה 1.
- ראינו ש[math]\displaystyle{ \lim_{x\to 0}\frac{sin(x)}{x}=1 }[/math].
- שימו לב ש[math]\displaystyle{ \lim_{x\to\infty}\frac{sin(x)}{x}=0 }[/math], כיוון שמדובר בחסומה חלקי שואפת לאינסוף.
רציפות
- רציפות.
- הגדרה:
- פונקציה f נקראית רציפה בקטע [math]\displaystyle{ [a,b] }[/math] אם f רציפה בכל נקודה בקטע [math]\displaystyle{ (a,b) }[/math] ובנוסף [math]\displaystyle{ \lim_{x\to a^+}f(x)=f(a) }[/math] וגם [math]\displaystyle{ \lim_{x\to b^-}f(x)=f(b) }[/math]
- טענה: אם f רציפה ב[math]\displaystyle{ x_0 }[/math] אזי לכל סדרה [math]\displaystyle{ x_n\to x_0 }[/math] (גם אם אינה שונה מ[math]\displaystyle{ x_0 }[/math]) מתקיים כי [math]\displaystyle{ f(x_n)\to f(x_0) }[/math].
- גבול של הרכבת פונקציות נכשל ללא רציפות.
- [math]\displaystyle{ f(x)=\frac{x}{x}, g(x)=0 }[/math] מתקיים כי [math]\displaystyle{ \lim_{x\to 0}f(x)=1,\lim_{x\to 2}g(x)=0 }[/math] אבל [math]\displaystyle{ \lim_{x\to 2}f(g(x))\neq 1 }[/math].
- הרכבת רציפות: תהי f רציפה ב[math]\displaystyle{ x_0 }[/math] ותהי g רציפה ב[math]\displaystyle{ f(x_0) }[/math]. אזי [math]\displaystyle{ g\circ f }[/math] רציפה ב[math]\displaystyle{ x_0 }[/math].
- הוכחה:
- תהי סדרה [math]\displaystyle{ x_0\neq x_n\to x_0 }[/math] אזי [math]\displaystyle{ f(x_n)\to f(x_0) }[/math]
- לפי הטענה הקודמת, [math]\displaystyle{ g(f(x_n))\to g(f(x_0)) }[/math].
- פונקציות הפיכות (הוכחות והגדרות מדוייקות בבדידה).
- פונקציה [math]\displaystyle{ f:[a,b]\to [c,d] }[/math] הפיכה אם"ם היא חח"ע ועל
- הפונקציה ההופכית היא [math]\displaystyle{ f^{-1}:[c,d]\to[a,b] }[/math] ומתקיים כי [math]\displaystyle{ f(x)=y }[/math] אם"ם [math]\displaystyle{ x=f^{-1}(y) }[/math]
- טענה: אם [math]\displaystyle{ f:[a,b]\to [c,d] }[/math] רציפה בקטע [math]\displaystyle{ [a,b] }[/math], אזי [math]\displaystyle{ f^{-1}:[c,d]\to[a,b] }[/math] רציפה בקטע [math]\displaystyle{ [c,d] }[/math].
- הוכחה:
- תהי [math]\displaystyle{ y_0\neq y_n\to y_0 }[/math], צ"ל ש [math]\displaystyle{ f^{-1}(y_n)\to f^{-1}(y_0) }[/math]
- יהי גבול חלקי [math]\displaystyle{ x_n=f^{-1}(y_n)\to L }[/math].
- אזי [math]\displaystyle{ f(x_n)=y_n\to y_0 }[/math].
- מצד שני, לפי רציפות הפונקציה f מתקיים [math]\displaystyle{ f(x_n)\to f(L) }[/math].
- לכן [math]\displaystyle{ f(L)=y_0 }[/math] ולכן [math]\displaystyle{ L=f^{-1}(y_0) }[/math].
אי רציפות
- מיון אי רציפות.
- רציפות - הגבול בנקודה שווה לערך בנקודה.
- סליקה - הגבול קיים וסופי בנקודה, אך שונה מהערך בנקודה או שהפונקציה אינה מוגדרת בנקודה.
- קפיצתית (מין ראשון) - הגבולות החד צדדיים קיימים סופיים ושונים בנקודה.
- עיקרית (מין שני) - אחד הגבולות החד צדדיים אינו קיים או שאינו סופי.
פרק 5 - גזירות
הגדרת הנגזרת
- [math]\displaystyle{ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} }[/math]
- [math]\displaystyle{ \displaystyle{\lim{h\to 0}} \frac{f(x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} }[/math]
- הסבר לגבי שיטת ההצבה בה השתמשנו לעיל:
- נניח כי [math]\displaystyle{ \lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0) }[/math] ונוכיח כי [math]\displaystyle{ \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0) }[/math], והוכחה דומה בכיוון ההפוך.
- תהי [math]\displaystyle{ x_0\neq x_n\to x_0 }[/math] נגדיר את הסדרה [math]\displaystyle{ 0\neq h_n=x_n-x_0\to 0 }[/math].
- כיוון ש[math]\displaystyle{ \frac{f(x_0+h_n)-f(x_0)}{h_n}\to f'(x_0) }[/math] נובע כי [math]\displaystyle{ \frac{f(x_n)-f(x_0)}{x_n-x_0}\to f'(x_0) }[/math].
- אם f גזירה בנקודה, היא רציפה בנקודה:
- צ"ל [math]\displaystyle{ \lim_{x\to x_0}f(x)=f(x_0) }[/math]
- לפי אריתמטיקה של גבולות זה שקול ל [math]\displaystyle{ \lim_{x\to x_0}f(x)-f(x_0)=0 }[/math]
- לפי עקרון win (קיצור של wouldn't it be nice?) מתקיים כי [math]\displaystyle{ \lim_{x\to x_0}f(x)-f(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\cdot (x-x_0)=f'(x_0)\cdot 0 = 0 }[/math]
- פונקציה הערך המוחלט אינה גזירה באפס
- [math]\displaystyle{ (|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h} }[/math] וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים.
- ניתן לשים לב גם ש[math]\displaystyle{ |x|=\sqrt{x^2} }[/math], וכמו כן נראה בהמשך כי[math]\displaystyle{ \sqrt{x} }[/math] אינה גזירה באפס.
הנגזרות של הפונקציות האלמנטריות
- טריגו:
- [math]\displaystyle{ \lim_{h\to 0}\frac{1-cos(h)}{h}=\lim_{h\to 0}\frac{sin^2(h)}{h(1+cos(h))}=\lim_{h\to 0}sin(h)\cdot \frac{sin(h)}{h}\cdot \frac{1}{1+cos(h)}=0\cdot 1 \cdot \frac{1}{2}=0 }[/math]
- [math]\displaystyle{ (sin(x))'=\lim_{h\to 0}\frac{sin(x+h)-sin(x)}{h}=\lim_{h\to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}=\lim_{h\to 0}sin(x)\cdot \frac{cos(h)-1}{h} + cos(x)\cdot \frac{sin(h)}{h}=cos(x) }[/math]
- באופן דומה [math]\displaystyle{ (cos(x))'=-sin(x) }[/math]
- לוג:
- [math]\displaystyle{ \lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e)
}[/math]
- המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה.
- (בפרט נובע כי [math]\displaystyle{ \lim_{x\to 0}\frac{ln(1+x)}{x}=1 }[/math].)
- [math]\displaystyle{ (log(x))'=\lim_{h\to 0}\frac{log(x+h)-log(x)}{h}= \lim_{h\to 0}\frac{log\left(\frac{x+h}{x}\right)}{h}=\lim_{h\to 0}\frac{1}{x}\cdot\frac{log\left(1+\frac{h}{x}\right)}{\frac{h}{x}}=\frac{log(e)}{x} }[/math]
- בפרט נובע כי [math]\displaystyle{ (ln(x))' = \frac{1}{x} }[/math]
- [math]\displaystyle{ \lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e)
}[/math]
- אקספוננט:
- [math]\displaystyle{ \lim_{h\to 0}\frac{a^h-1}{h} = \{t=a^h-1, h=log_a(1+t)\} = \lim_{t\to 0} \frac{t}{log_a(1+t)} = \frac{1}{log_a(e)} = \frac{1}{\frac{ln(e)}{ln(a)}}=ln(a) }[/math]
- [math]\displaystyle{ (a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a) }[/math]
- בפרט נובע כי [math]\displaystyle{ (e^x)'=e^x }[/math].
- ישר:
- [math]\displaystyle{ (x)'=\displaystyle{\lim_{h\to 0}\frac{(x+h)-x}{h} = 1} }[/math]
חוקי הגזירה
- תהיינה f,g גזירות ב[math]\displaystyle{ x_0 }[/math] אזי:
- [math]\displaystyle{ (cf)'(x_0)=cf'(x_0) }[/math]
- [math]\displaystyle{ (f+g)'(x_0)=f'(x_0)+g'(x_0) }[/math]
- [math]\displaystyle{ (f\cdot g)'(x_0) = f'(x_0)\cdot g(x_0)+f(x_0)\cdot g'(x_0) }[/math]
תהי g גזירה ב[math]\displaystyle{ x_0 }[/math] ותהי f הגזירה ב[math]\displaystyle{ g(x_0) }[/math]:
- [math]\displaystyle{ (f\circ g)'(x_0) = \lim_{x\to x_0} \frac{f(g(x))-f(g(x_0))}{x-x_0} }[/math]
- תהי סדרה [math]\displaystyle{ x_0\neq x_n\to x_0 }[/math].
- רוצים לומר ש[math]\displaystyle{ \frac{f(g(x_n))-f(g(x_0))}{x_n-x_0}= \frac{f(g(x_n))-f(g(x_0))}{g(x_n)-g(x_0)}\cdot \frac{g(x_n)-g(x_0)}{x_n-x_0}\to f'(g(x_0))\cdot g'(x_0) }[/math].
- אמנם [math]\displaystyle{ g(x_n)\to g(x_0) }[/math] בגלל שהרציפות נובעת מהגזירות, אבל לא ידוע ש[math]\displaystyle{ g(x_n)\neq g(x_0) }[/math] ובמקרה זה אנחנו כופלים ומחלקים באפס.
- אם יש תת סדרה [math]\displaystyle{ a_n }[/math] של [math]\displaystyle{ x_n }[/math] עבורה [math]\displaystyle{ g(a_n)=g(x_0) }[/math] אזי [math]\displaystyle{ \frac{g(a_n)-g(x_0)}{a_n-x_0}=0 }[/math] ולכן [math]\displaystyle{ g'(x_0)=0 }[/math].
- לכן [math]\displaystyle{ f'(g(x_0))\cdot g'(x_0)=0 }[/math].
- כמו כן, [math]\displaystyle{ \frac{f(g(a_n))-f(g(x_0))}{a_n-x_0}=0 }[/math].
- לכן בכל מקרה קיבלנו כי [math]\displaystyle{ \frac{f(g(x_n))-f(g(x_0))}{x_n-x_0}\to f'(g(x_0))\cdot g'(x_0) }[/math]
- סה"כ [math]\displaystyle{ (f\circ g)'(x_0)=f'(g(x_0))\cdot g'(x_0) }[/math].
נגזרת של חזקה
- עבור [math]\displaystyle{ x\gt 0 }[/math] מתקיים [math]\displaystyle{ (x^\alpha)'=(e^{ln\left(x^\alpha\right)})' = (e^{\alpha\cdot ln(x)})' = e^{\alpha\cdot ln(x)}\cdot \frac{\alpha}{x} = x^\alpha \cdot \frac{\alpha}{x} = \alpha x^{\alpha-1} }[/math]
- עבור חזקות בהן הביטוי מוגדר, [math]\displaystyle{ (x^\alpha)'=\alpha x^{\alpha-1} }[/math] גם עבור [math]\displaystyle{ x\leq 0 }[/math] (לפי תכונות של פונקציות זוגיות ואי זוגיות, ובאפס לפי חישוב ישיר).
- חזקה:
- [math]\displaystyle{ (x^\alpha)'=\alpha x^{\alpha-1} }[/math] לכל [math]\displaystyle{ \alpha\in \mathbb{R} }[/math], הוכחה בהמשך.
- בפרט:
- [math]\displaystyle{ (1)'=0 }[/math]
- [math]\displaystyle{ (\frac{1}{x})' = (x^{-1})'=-\frac{1}{x^2} }[/math]
- [math]\displaystyle{ (\sqrt{x})'=(x^{\frac{1}{2}})'=\frac{1}{2\sqrt{x}} }[/math]
- עבור [math]\displaystyle{ x\gt 0 }[/math] מתקיים [math]\displaystyle{ (\sqrt[3]{x})'=(x^{\frac{1}{3}})'=\frac{1}{3\sqrt[3]{x^2}} }[/math] וכיוון שהפונקציה אי זוגית נובע שהנגזרת שווה לביטוי הזה גם לשאר ערכי x.
- דוגמא: חישוב הנגזרת של [math]\displaystyle{ x^x }[/math]
נגזרת מנה
תהיינה f,g גזירות בנקודה x כך ש [math]\displaystyle{ g(x)\neq 0 }[/math]:
- נזכור כי [math]\displaystyle{ (\frac{1}{x})'=-\frac{1}{x^2} }[/math]
- אזי בנקודה x מתקיים: [math]\displaystyle{ \left(\frac{f}{g}\right)'=\left(f\cdot \frac{1}{g}\right)' = f'\cdot \frac{1}{g} + f\cdot \frac{-g'}{g^2} = \frac{f'g-g'f}{g^2} }[/math]
פונקציות הופכיות ונגזרתן
- טענה: תהי [math]\displaystyle{ f:[a,b]\to [c,d] }[/math] הפיכה ורציפה. ונניח כי היא גזירה בנק' [math]\displaystyle{ a\lt x_0\lt b }[/math] כך ש [math]\displaystyle{ f'(x_0)\neq 0 }[/math].
- אזי [math]\displaystyle{ f^{-1} }[/math] גזירה בנק' [math]\displaystyle{ f(x_0) }[/math] ומתקיים כי
- [math]\displaystyle{ (f^{-1})'(f(x_0))=\frac{1}{f'(x_0)} }[/math] או בנוסח אחר-
- [math]\displaystyle{ (f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))} }[/math]
- הוכחה:
- [math]\displaystyle{ (f^{-1})'(f(x_0)) = \lim_{y\to f(x_0)}\frac{f^{-1}(y)-f^{-1}(f(x_0))}{y-f(x_0)} }[/math]
- תהי [math]\displaystyle{ f(x_0)\neq y_n\to f(x_0) }[/math] ונסמן [math]\displaystyle{ x_n=f^{-1}(y_n) }[/math].
- אזי מתוך רציפות וחח"ע נובע כי [math]\displaystyle{ x_0\neq x_n\to f^{-1}(f(x_0))=x_0 }[/math]
- [math]\displaystyle{ \frac{f^{-1}(y_n)-f^{-1}(f(x_0))}{y_n-f(x_0)} = \frac{x_n-x_0}{f(x_n)-f(x_0)} \to \frac{1}{f'(x_0)} }[/math]
- דוגמא חשובה:
- [math]\displaystyle{ tan:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R} }[/math] הפיכה וההופכית שלה נקראית [math]\displaystyle{ arctan }[/math].
- [math]\displaystyle{ tan^2(x)+1 = \frac{sin^2(x)}{cos^2(x)}+1 = \frac{1}{cos^2(x)} }[/math]
- [math]\displaystyle{ arctan'(x) = \frac{1}{\frac{1}{cos^2(arctan(x))}} = \frac{1}{tan^2(arctan(x))+1}=\frac{1}{1+x^2} }[/math]
- הנגזרות של [math]\displaystyle{ arcsin,arccos }[/math]
פרק 6 - חקירה
משפט ערך הביניים
- תהי f רציפה בקטע [math]\displaystyle{ [a,b] }[/math] כאשר [math]\displaystyle{ a\lt b\in\mathbb{R} }[/math].
- עוד נניח כי [math]\displaystyle{ f(a)\leq 0 }[/math] וכן [math]\displaystyle{ f(b)\geq 0 }[/math].
- אזי קיימת נקודה [math]\displaystyle{ c\in[a,b] }[/math] כך ש [math]\displaystyle{ f(c)=0 }[/math]
- תהי f רציפה ב[math]\displaystyle{ [0,1] }[/math] כך ש[math]\displaystyle{ f(1)=2 }[/math], הוכיחו שקיימת נק' [math]\displaystyle{ c\in [0,1] }[/math] עבורה [math]\displaystyle{ f(c)=\frac{1}{c} }[/math]
- נעביר אגף ונביט בפונקציה [math]\displaystyle{ h(x)=f(x)-\frac{1}{x} }[/math] שצריך למצוא שורש שלה.
- [math]\displaystyle{ h(1)\gt 0 }[/math].
- [math]\displaystyle{ \lim_{x\to 0^+}h(x)=f(0)-\infty=-\infty }[/math] ולכן קיימת נקודה [math]\displaystyle{ 0\lt d\lt 1 }[/math] עבורה [math]\displaystyle{ h(d)\lt 0 }[/math].
- לפי משפט ערך הביניים בקטע [math]\displaystyle{ [d,1] }[/math] קיימת נק' המאפסת את הפונקציה h.
משפטי ויירשטראס
- פונקציה רציפה בקטע סופי סגור - חסומה.
- פונקציה רציפה בקטע סופי סגור - מקבלת מינימום ומקסימום.
משפט פרמה
- אם פונקציה גזירה בנק' קיצון מקומי, הנגזרת שווה שם לאפס.
- ההפך אינו נכון, ייתכן שהנגזרת תתאפס אך בנקודה לא יהיה קיצון ואף לא פיתול.
משפט רול
- תהי f רציפה ב[math]\displaystyle{ [a,b] }[/math] וגזירה ב[math]\displaystyle{ (a,b) }[/math] כך ש [math]\displaystyle{ f(a)=f(b) }[/math] אזי קיימת נקודה [math]\displaystyle{ c\in(a,b) }[/math] כך ש [math]\displaystyle{ f'(c)=0 }[/math]
- כלומר, פונקציה רציפה בקטע סגור, וגזירה בקטע הפתוח, שמקבלת את אותו ערך בקצוות - הנגזרת שלה מתאפסת בנקודה כלשהי בקטע הפתוח.
- לפולינום מדרגה n יש לכל היותר n שורשים שונים.
משפט לגראנז' ותחומי עלייה וירידה
- פונקציה f נקראת עולה בתחום A אם לכל [math]\displaystyle{ x_1\lt x_2\in A }[/math] מתקיים כי [math]\displaystyle{ f(x_1)\leq f(x_2) }[/math]
- פונקציה f נקראת יורדת בתחום A אם לכל [math]\displaystyle{ x_1\lt x_2\in A }[/math] מתקיים כי [math]\displaystyle{ f(x_1)\geq f(x_2) }[/math]
- תהי f רציפה ב[math]\displaystyle{ [a,b] }[/math] וגזירה ב[math]\displaystyle{ (a,b) }[/math] אזי קיימת נקודה [math]\displaystyle{ c\in(a,b) }[/math] כך ש [math]\displaystyle{ f'(c)=\frac{f(b)-f(a)}{b-a} }[/math]
- כלומר קיימת נקודה בה השיפוע שווה לשיפוע המיתר בין שתי הנקודות בקצוות הקטע.
- תהי f רציפה ב[math]\displaystyle{ [a,b] }[/math] וגזירה ב[math]\displaystyle{ (a,b) }[/math] אזי f עולה בקטע [math]\displaystyle{ [a,b] }[/math] אם ורק אם [math]\displaystyle{ f'(x)\geq 0 }[/math] לכל [math]\displaystyle{ x\in[a,b] }[/math]
- כמו כן, באותם תנאים, אם [math]\displaystyle{ f'(x)\geq 0 }[/math] לכל [math]\displaystyle{ x\in[a,b] }[/math] אזי [math]\displaystyle{ f(a)\lt f(b) }[/math] או שהפונקציה קבועה ב[math]\displaystyle{ [a,b] }[/math] ונגזרתה שווה אפס בקטע [math]\displaystyle{ (a,b) }[/math]
- דוגמא
- יהי [math]\displaystyle{ a\in\mathbb{R} }[/math] מצאו כמה פתרונות יש למשוואה [math]\displaystyle{ sin(x)=x+a }[/math]
משפט קושי (לגראנז' המוכלל)
- תהיינה f,g רציפות ב[math]\displaystyle{ [a,b] }[/math] וגזירות ב[math]\displaystyle{ (a,b) }[/math] כך ש[math]\displaystyle{ g'\neq 0 }[/math] בקטע [math]\displaystyle{ (a,b) }[/math].
- אזי קיימת נקודה [math]\displaystyle{ c\in(a,b) }[/math] כך ש [math]\displaystyle{ \frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} }[/math]
- הוכחת משפט לגראנז' המוכלל, שמוכיח גם את משפט לגראנז' עצמו כמקרה פרטי.
- ראשית, כיוון ש[math]\displaystyle{ g'(x)\neq 0 }[/math] בקטע [math]\displaystyle{ (a,b) }[/math] נובע לפי רול כי [math]\displaystyle{ g(a)\neq g(b) }[/math] ולכן מותר לחלק בהפרש ביניהם.
- [math]\displaystyle{ h(x)=f(x)-f(a) - \frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a)) }[/math]
- [math]\displaystyle{ h(a)=h(b)=0 }[/math] ולכן לפי רול קיימת נק' [math]\displaystyle{ c\in (a,b) }[/math] עבורה [math]\displaystyle{ h'(c)=0 }[/math] וזה מה שרצינו להוכיח.
- (שימו לב שמותר לחלק ב[math]\displaystyle{ g'(c) }[/math].)
- עבור [math]\displaystyle{ g(x)=x }[/math] נקבל את משפט לאגראנז' הרגיל.
כלל לופיטל
- תהיינה פונקציות כך ש [math]\displaystyle{ f,g\to 0 }[/math] או [math]\displaystyle{ f,g\to \infty }[/math] ונניח כי [math]\displaystyle{ \frac{f'}{g'}\to L }[/math] אזי גם [math]\displaystyle{ \frac{f}{g}\to L }[/math]
משפט סדרי הגודל
- לכל [math]\displaystyle{ 0\lt a,b }[/math] מתקיים כי:
- [math]\displaystyle{ \displaystyle{\lim_{x\to\infty} \frac{x^a}{(e^x)^b} =0} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to\infty} \frac{x^a}{\ln^b(x)} =\infty} }[/math]
דוגמאות נוספות
- [math]\displaystyle{ \displaystyle{\lim_{x\to 1} \frac{\ln(x)}{\sin(\pi x)} =-\frac{1}{\pi}} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to\infty} \frac{x}{sin(x)+2+x} =1} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to 0^+} xe^{\frac{1}{x}} =\infty} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to\infty} \sqrt[x]{x} =1} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to 0^+} x\ln(x) =0} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to 0^+} x^x =1} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to 0^+} \frac{1}{x}+\ln(x) =\infty} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to\frac{\pi}{2}} \left(\sin(x)\right)^{\tan^2(x)} =\frac{1}{\sqrt{e}}} }[/math]
- [math]\displaystyle{ \displaystyle{\lim_{x\to(-\infty)} \frac{x}{\sqrt{x^2+1}} =-1} }[/math]
הוכחת כלל לופיטל בשני המקרים
אהבתם חדו"א 1? אז תעופו על חדו"א 2!