הבדלים בין גרסאות בדף "פתרון לינארית 2, אונ' בר אילן, תשנ"ט, מועד א, שאלה 5"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
מ
מ
שורה 6: שורה 6:
 
נזכור ראשית שהחזקה של הגורם <math>\ x-2</math> בפולינום המינימלי של A = גודל הבלוק הגדול ביותר המתאים לע"ע 2 בצורת ז'ורדן של המטריצה = 1; לכן מופיע בלוק ז'ורדן של 2 מסדר 1.  
 
נזכור ראשית שהחזקה של הגורם <math>\ x-2</math> בפולינום המינימלי של A = גודל הבלוק הגדול ביותר המתאים לע"ע 2 בצורת ז'ורדן של המטריצה = 1; לכן מופיע בלוק ז'ורדן של 2 מסדר 1.  
 
אבל הריבוי האלגברי של הע"ע 2 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 2 בצורת ז'ורדן=1, ולכן בכל צורות ז'ורדן האפשריות יש בדיוק בלוק אחד שמתאים ל-2, והוא מסדר 1.
 
אבל הריבוי האלגברי של הע"ע 2 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 2 בצורת ז'ורדן=1, ולכן בכל צורות ז'ורדן האפשריות יש בדיוק בלוק אחד שמתאים ל-2, והוא מסדר 1.
 
  
 
באופן דומה הריבוי האלגברי של הע"ע 0 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 0 בצורת ז'ורדן=3, ו-  
 
באופן דומה הריבוי האלגברי של הע"ע 0 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 0 בצורת ז'ורדן=3, ו-  
 
הריבוי האלגברי של הע"ע 3 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 3 בצורת ז'ורדן=3.
 
הריבוי האלגברי של הע"ע 3 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 3 בצורת ז'ורדן=3.
 +
  
 
כעת, עבור כל פ"מ, נמקם ראשית את <math>J_1(2)</math> בצורת הז'ורדן, ואז נוכל להתעלם מהע"ע 2, ונשים בכל פעם את הבלוקים שחייבים להופיע לפי החזקה המתאימה בפ"מ, ונראה כמה חופש בחירה נותר לנו.
 
כעת, עבור כל פ"מ, נמקם ראשית את <math>J_1(2)</math> בצורת הז'ורדן, ואז נוכל להתעלם מהע"ע 2, ונשים בכל פעם את הבלוקים שחייבים להופיע לפי החזקה המתאימה בפ"מ, ונראה כמה חופש בחירה נותר לנו.
 +
  
 
1) עבור פ"מ <math>M_A(x)=x^{3}(x-1)^{3}(x-2)=p_A(x)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
1) עבור פ"מ <math>M_A(x)=x^{3}(x-1)^{3}(x-2)=p_A(x)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
הרי אנו יודעים שבצורת ז'ורדן חייב להופיע בלוק המתאים לע"ע i, מסדר השווה לחזקה שלו בפ"מ - ונקבל שהמטר' שקיבלנו היא כבר מסדר <math>7x7</math>, ולכן היא צורת ז'ורדן.
 
הרי אנו יודעים שבצורת ז'ורדן חייב להופיע בלוק המתאים לע"ע i, מסדר השווה לחזקה שלו בפ"מ - ונקבל שהמטר' שקיבלנו היא כבר מסדר <math>7x7</math>, ולכן היא צורת ז'ורדן.
 +
  
 
2) עבור פ"מ <math>M_A(x)=x^{3}(x-1)^{2}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
2) עבור פ"מ <math>M_A(x)=x^{3}(x-1)^{2}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 +
  
 
3) עבור פ"מ <math>M_A(x)=x^{2}(x-1)^{3}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
3) עבור פ"מ <math>M_A(x)=x^{2}(x-1)^{3}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 +
  
 
4) עבור פ"מ <math>M_A(x)=x^{2}(x-1)^{2}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
4) עבור פ"מ <math>M_A(x)=x^{2}(x-1)^{2}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 +
  
 
5) עבור פ"מ <math>M_A(x)=x^{2}(x-1)(x-2)</math>, ישנן 2 אפשרויות לצורות ז'ורדן: השוני ביניהן הוא בבלוקים המתאימים לע"ע 1.
 
5) עבור פ"מ <math>M_A(x)=x^{2}(x-1)(x-2)</math>, ישנן 2 אפשרויות לצורות ז'ורדן: השוני ביניהן הוא בבלוקים המתאימים לע"ע 1.
 +
  
 
6) עבור פ"מ <math>M_A(x)=x(x-1)^{2}(x-2)</math>, ישנן 2 אפשרויות לצורות ז'ורדן: השוני ביניהן הוא בבלוקים המתאימים לע"ע 0.
 
6) עבור פ"מ <math>M_A(x)=x(x-1)^{2}(x-2)</math>, ישנן 2 אפשרויות לצורות ז'ורדן: השוני ביניהן הוא בבלוקים המתאימים לע"ע 0.
 
בכך ענינו על סעיף ב'.
 
בכך ענינו על סעיף ב'.
 +
  
 
7) עבור פ"מ <math>M_A(x)=x^{3}(x-1)(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
7) עבור פ"מ <math>M_A(x)=x^{3}(x-1)(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 +
  
 
8) עבור פ"מ <math>M_A(x)=x(x-1)^{3}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 
8) עבור פ"מ <math>M_A(x)=x(x-1)^{3}(x-2)</math>, צורת ז'ורדן נקבעת באופן יחיד.
 +
  
 
9) לבסוף, עבור הפ"מ <math>M_A(x)=x(x-1)(x-2)</math>,  צורת ז'ורדן נקבעת באופן יחיד, שכן כל הבלוקים הם מסדר 1, והרי המספר של הבלוקים המתאימים לכל ע"ע נקבע חד-משמעית ע"י הפ"א.
 
9) לבסוף, עבור הפ"מ <math>M_A(x)=x(x-1)(x-2)</math>,  צורת ז'ורדן נקבעת באופן יחיד, שכן כל הבלוקים הם מסדר 1, והרי המספר של הבלוקים המתאימים לכל ע"ע נקבע חד-משמעית ע"י הפ"א.

גרסה מ־19:59, 19 בדצמבר 2011

p_A(x)=x^{3}(x-1)^{3}(x-2)

הפ"מ מחלק את הפ"א, ולכן ישנן 9 אפשרויות עבור הפ"מ (באופן כללי - מס' הפ"מ האפשריים הוא כפל כל המעריכים שבפ"א - קומבינטוריקה פשוטה). מדובר בבדיקה מייגעת ולא מתוחכמת, אבל כנראה שאין ברירה -- נבדוק את כל האפשרויות.

נזכור ראשית שהחזקה של הגורם \ x-2 בפולינום המינימלי של A = גודל הבלוק הגדול ביותר המתאים לע"ע 2 בצורת ז'ורדן של המטריצה = 1; לכן מופיע בלוק ז'ורדן של 2 מסדר 1. אבל הריבוי האלגברי של הע"ע 2 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 2 בצורת ז'ורדן=1, ולכן בכל צורות ז'ורדן האפשריות יש בדיוק בלוק אחד שמתאים ל-2, והוא מסדר 1.

באופן דומה הריבוי האלגברי של הע"ע 0 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 0 בצורת ז'ורדן=3, ו- הריבוי האלגברי של הע"ע 3 בפולינום האופייני = סכום הגדלים של הבלוקים המתאימים ל- 3 בצורת ז'ורדן=3.


כעת, עבור כל פ"מ, נמקם ראשית את J_1(2) בצורת הז'ורדן, ואז נוכל להתעלם מהע"ע 2, ונשים בכל פעם את הבלוקים שחייבים להופיע לפי החזקה המתאימה בפ"מ, ונראה כמה חופש בחירה נותר לנו.


1) עבור פ"מ M_A(x)=x^{3}(x-1)^{3}(x-2)=p_A(x), צורת ז'ורדן נקבעת באופן יחיד. הרי אנו יודעים שבצורת ז'ורדן חייב להופיע בלוק המתאים לע"ע i, מסדר השווה לחזקה שלו בפ"מ - ונקבל שהמטר' שקיבלנו היא כבר מסדר 7x7, ולכן היא צורת ז'ורדן.


2) עבור פ"מ M_A(x)=x^{3}(x-1)^{2}(x-2), צורת ז'ורדן נקבעת באופן יחיד.


3) עבור פ"מ M_A(x)=x^{2}(x-1)^{3}(x-2), צורת ז'ורדן נקבעת באופן יחיד.


4) עבור פ"מ M_A(x)=x^{2}(x-1)^{2}(x-2), צורת ז'ורדן נקבעת באופן יחיד.


5) עבור פ"מ M_A(x)=x^{2}(x-1)(x-2), ישנן 2 אפשרויות לצורות ז'ורדן: השוני ביניהן הוא בבלוקים המתאימים לע"ע 1.


6) עבור פ"מ M_A(x)=x(x-1)^{2}(x-2), ישנן 2 אפשרויות לצורות ז'ורדן: השוני ביניהן הוא בבלוקים המתאימים לע"ע 0. בכך ענינו על סעיף ב'.


7) עבור פ"מ M_A(x)=x^{3}(x-1)(x-2), צורת ז'ורדן נקבעת באופן יחיד.


8) עבור פ"מ M_A(x)=x(x-1)^{3}(x-2), צורת ז'ורדן נקבעת באופן יחיד.


9) לבסוף, עבור הפ"מ M_A(x)=x(x-1)(x-2), צורת ז'ורדן נקבעת באופן יחיד, שכן כל הבלוקים הם מסדר 1, והרי המספר של הבלוקים המתאימים לכל ע"ע נקבע חד-משמעית ע"י הפ"א.


נותר רק לסכם את המספרים שקיבלנו (ולהוסיף פירוט אם המרצים יבקשו, אבל זה באמת תהליך רפטטיבי), ולקבל 7+2*2=11 צורות ז'ורדן אפשריות!