88-373 תשפא סמסטר ב

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

88-373 הסתברות וסטטיסטיקה מתמטית

מרצה: פרופ' גדעון עמיר.

מתרגל: גיא בלשר.

שעות קבלה: בתיאום מראש.


קישורים

הודעות

תרגילים להגשה

תרגיל 1

תרגיל 1 - להגשה עד 7.6 ניתנה הארכה גורפת של שבוע, דרך המודל. לשאלות, תהיות וכו' - מוזמנים לשלוח מייל. (09/05 - עלתה גרסה עם תיקון לשאלה 7ב')

תרגיל 2 - להגשה עד 30.6

מערכי התרגול

תרגילי בית

תרגילי הבית אינם להגשה, אך יעזרו כמובן לתרגול שלכם. מוזמנים לפנות בכל שאלה לגביהם.

חומרי עזר

מקורות נוספים

המקורות האלו לא חופפים במלואם לקורס שלנו (ואולי גם לא מכילים את כל הנושאים), אבל אפשר להיעזר בהם כמקור נוסף להסברים / הוכחות (ובחלקם תרגילים). הרשימה עשויה להתעדכן במהלך הסמסטר.

  • הספר Probability with Martingales של David Williams
  • סיכום של John B. Walsh על מרטינגלים - [1]

מידת סטילטיס

אם [math]\displaystyle{ F }[/math] היא פונקציה מונוטונית לא יורדת ורציפה מימין, אפשר להגדיר את מידת סטילטיס (Stieltjes) המתאימה לה לפי [math]\displaystyle{ \mu_F\left((a,b]\right)=F(b)-F(a) }[/math]. כיוון שאוסף הקטעים הזה יוצר את [math]\displaystyle{ \sigma }[/math]-אלגברת בורל, זה מגדיר מידה על כל [math]\displaystyle{ \mathbb{B}(\mathbb{R}) }[/math]. חומרים לגבי מידת סטילטיס אפשר למצוא כאן (על הגדרת המידה) וכאן (על חישוב אינטגרל ביחס למידה הזו).

אנחנו לא נבצע כמעט חישובים עם מידת סטילטיס ישירות, אבל טוב להכיר את ההגדרה ולדעת מה היא אומרת. בהתאם, הוספתי שאלה בתרגיל הבית על חישוב הסתברויות ותוחלת עם מידת סטילטיס.

מוטיבציה

ProbabilitiesDanny.bmp